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ABSTRACT 

Most video contents are encoded using 8 bits per color channel, offering 
256 possible values for each component. This has been sufficient for most 
traditional uses, but with the increased adoption of high dynamic range 
(HDR) technologies, standard dynamic range (SDR) content, may be up-
converted to HDR, leading to an amplification of certain artifacts. 
Quantization artifacts in particular, taking the form of false contours, may 
become more visible after luminance expansion, especially in bright image 
areas. To correct such artifacts, debanding methods first aim at 
distinguishing between real image edges and contours due to quantization, 
and follow by filtering steps to correct them. Different criteria of visibility may 
be employed, but in all cases, the images are considered as they are. 
Nevertheless, when converting to HDR, if banding is corrected as a pre-
process, the visibility of false contours should be assessed with this 
conversion in mind. To this end, in this work, we perform a series of user 
studies to assess different debanding approaches both in SDR and up-
converted HDR images, exploring how the visibility of banding changes with 
luminance. We then discuss how CNN-based approaches could be 
extended to consider banding visibility in the context of luminance 
expansion. 

INTRODUCTION 

Color in digital images and video is represented using a limited number of distinct values, 
depending on the number of bits used (bit-depth). Traditionally, each color channel is 
encoded using 8 bits, however the increase in display capabilities, both in terms of display 
size and luminance levels means that smooth variations of color may lead to visible 
quantization steps, where changes between two subsequent values create an artificial edge 
or contour Figure 1. This kind of artifact is known as banding and it significantly affects the 
visual quality of images. 

The increasing adoption of high dynamic range (HDR) technologies makes this issue more 
critical today. Existing, standard dynamic range (SDR) content is often up-converted to HDR, 
which is achieved by stretching or redistributing the luminance information of the image in 
order to extend its dynamic range. Whether this is achieved through global functions [1], [2] 
or local filters [3]–[5], a side effect of such conversions is that artifacts in the original image 
may be amplified. Solutions for reducing the visibility of such artifacts are therefore 
necessary. 
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Figure 1: Example of banding and correction results (here shown with 30% contrast increase 
for visualization) 

Several approaches exist to treat banding artifacts, generally consisting of two steps: 
locating false contours and potentially analyzing their characteristics, followed by a filtering 
step to correct them [6], [7]. The first step is necessary to ensure that only contours due to 
quantization are filtered, while real image edges and textures are preserved. A more detailed 
overview of different banding methods is given in the following section, but we observe that 
despite the extensive volume of work addressing this issue, the detection and localization 
of banding is typically based on an assessment of visibility, which in turn depends both on 
the image content itself but also on how the image is viewed 

In the case of SDR to HDR conversions, it might not always be feasible to correct banding 
after luminance expansion, especially when such expansion depends on the target display 
luminance for example. In such scenario, it would be desirable to correct banding prior to 
expansion, but with knowledge of how the visibility of such artefact might be affected by the 
conversion and the target viewing conditions.  

To address this challenge, in this work, we first aim to understand how luminance expansion 
affects the visibility of banding through a series of user tests. First, we evaluate the 
effectiveness of several existing debanding methods on a variety of SDR images. We then 
assess whether banding becomes more visible after up-conversion to HDR, evaluating the 
robustness of different correction approaches to this kind of transformation. Finally, we 
discuss how the predictive power of neural networks could be employed to correct banding 
as a pre-process prior to luminance expansion, while predicting the visibility of the false 
contours in the final viewing conditions.  

BACKGROUND 

To remove false contours in images, two general approaches may be followed depending 
on the goals of the correction. Different filters can be employed to reduce the visibility of 
false contours, while maintaining the bit-depth of the image, or alternatively, if the goal is to 
extend the bit-depth of the image, correction of banding can be performed simultaneously, 
taking advantage of the increased number of intensity steps of the new bit-depth. 

In the simplest case, bit-depth extension from a low bit-depth  to a higher bit-depth  may 

be performed using simple bit manipulations, such as zero-padding, where a number 
 of zeros is appended in the least significant bit (LSB) positions of the  bit-depth 

image, or multiplication by an ideal gain (MIG), where values in the  bit-depth image are 

multiplied by a fixed factor  to obtain a  bit-depth image [8]. A slightly more 



        

complex strategy is bit-replication, where instead of padding the  LSB with zeros,  the  

most significant bits (MSB) are copied to the  LSB positions of the higher bit-depth image 

[8].  

The above discussed approaches lead to an increase in bit-depth but do not offer 
corresponding visual improvements. To reduce the visibility of banding, while increasing the 
image bit-depth, Mittal et al. employ a classification approach where candidate values in the 
new higher bit-depth are characterized according to local neighborhood values a minimum 
risk strategy is  employed for selecting the best candidate [9]. In an alternative solution [10], 
using an adaptive local filtering approach, the image bit-depth is first increased and contour 
artefacts are then reduced by applying a low pass filter to smooth areas.  

When the goal is the reduction of the visibility of banding without an associated increase in 
bit-depth, methods cannot rely on the additional levels offered by the increased bit-depth to 
mask the appearance of false contours. Instead, contours are generally broken by the 
addition of well-controlled noise or dithering. To avoid modifying areas without banding, 
typically the first step is to detect where banding occurs. Bhagavathy et al. employ a multi-
scale analysis to localize and characterize banding [6]. A probabilistic dithering step then 
follows to perturb pixel intensities in a local neighborhood of the appropriate scale, reducing 
the visibility of false contours. Although this approach can accurately find false contour, it 
boasts a heavy computational cost.   

Baugh et al. [11] also employ dithering to reduce the visibility of banding, but propose a 
novel ‘banding index’ metric to quantify and localize banding in images, which aims to detect 
smooth regions. Using an RGB-based segmentation to detect large blocks of uniform 
values, a banding mask can be created, which guides subsequent filtering and dithering.  
Other efforts have been made to produce banding visibility metrics. Wang et al. [12] 
proposed a metric considering zero-gradient (homogeneous) connected edges as candidate 
banding edges: the length and neighborhood edge coherence of previously found edges is 
then assessed to produce a banding visibility map. Nevertheless, this kind of edge detection 
is very sensitive to edge noise. Tandon et al. [13]  take a similar approach as [6] and make 
use of a banding confidence map extracted at multiple spatial frequencies with a fixed 
neighborhood size, which are then pooled together to produce a banding index. The authors 
also attempt to reduce the computational cost of the solution of Bhagavathy et al. [6] by 
fixing a set of hyper-parameters. In an alternative solution, Lee et al. make use of directional 
contrast features to apply an adaptive directional smoothing filter [14].  

More accurate predictions about the visibility of contours can be performed by considering 
properties of visual perception, particularly luminance and chromatic contrast sensitivity 
(CSF) and visual masking effect [15]. Huang et al. [16] first compute a false contour 
candidate (FCC) map, by removing smooth regions and textured areas, taking advantage 
of above mentioned visual masking effect. Then pixels are selected according to their 
gradient profile in the previously found FCC pixels normal contour direction. Tu et al. similarly 
extract candidate banding edges by gradient thresholding and morphological operations, 
and then incorporate simple models of luminance and texture masking in their BBAND 
approach to remove detected edges that are likely to not be visible [17]. In [7], they further 
employ their proposed BBAND index to guide a filter-based banding correction method. To 
better match visual perception of banding, Denes et al. [18] consider a more complete model 
of chromatic contrast sensitivity [19], and make use of spatial-frequency components of the 
quantization error function to predict chromatic banding.  



        

More recently, deep learning has been employed for correcting banding artifacts and 
extending image bit-depth. Among those methods, BitNet [20] is trained on pairs of source 
images and images with reduced bit depth with the aim of performing color reconstruction 
as well as quantization artefact suppression. BitNet produces effective results for low (3/4 
bit) bit-depth conversion, however for higher bit-depth scenarios, e.g. 8 to 10-bit 
conversions, the proposed network would likely have to be retrained. Zhao et al. employ a 
two-layer residual network-based approach to treat both flat and non-flat areas appropriately 
[21]. Other attempts have also been made to perform bit depth extension using deep 
learning methods with multiple architectures. Punnapurath et al. [22] made a review of 
existing works, and proposed a new method, which was shown to outperform prior work.   

Although the problems of both bit-depth extension and removal of false contours are not 
new, the majority of methods focus on use cases where source images are encoded in 
relatively low bit-depths. Further, in all cases described, the visibility of banding is assessed 
based on a direct evaluation of pixel values and relations, with no consideration of the 
encoding of the image. Implicitly, methods assume that images are SDR and used statistics 
and thresholds are designed accordingly. Nevertheless, contrast sensitivity – a feature often 
used to assess visibility of banding – depends on luminance, as such we might imagine that 
knowing the display luminance as well as the encoding (EOTF) of the image might have a 
significant effect on how banding is perceived. To this end, we assess banding visibility in 
both SDR and HDR conditions and explore directions for extending existing models to 
consider these aspects in their assessment of banding severity. 

VISIBILITY OF BANDING 

Several methods aim at detecting false contours that are likely to be visible. The criteria 
used may rely on low-level image statistics and thresholds [9] or on more complete 
perceptual models that consider contrast sensitivity [18]. Nevertheless, little data exists from 
subjective evaluations of banding artifacts.  

To evaluate banding visibility in SDR and 
HDR conditions, as well as the effectiveness 
of different correction approaches, we 
perform a series of user studies, where for a 
selection of images, banding and image 
quality are assessed for several debanding 
methods, outlined in Table 1.  

In the first study, SDR images corrected with 
the selected methods are evaluated, 
providing a baseline. Then, to evaluate how 
robust these correction methods are against 
luminance expansion, we convert the 
processed images to HDR, targeting different peak luminance levels, using the SDR to HDR 
conversion solution developed by b<>com2. The up-converted HDR images are then used 
in a second subjective study. A detailed description of the stimuli and the experimental 
procedure used is given in the following.  

 

2 https://b-com.com/en/process/adaptive-hdr-converter 

Method Title 

ADB Adaptive Debanding Filter 
[7] 

ADBd Adaptive Debanding Filter 
with dithering [7] 

FFDB FFmpeg ‘deband’ filter 

FFG FFmpeg ‘gradfun’ filter 

SRC Source uncorrected image 

Table 1: Compared debanding methods 



        

Stimuli 

To provide realistic conditions, images were chosen from the YT-UGC video dataset3, which 
contains typical user-generated videos for several categories, varying from sports, to music 
concerts, to animation and so on. For each video, an associated banding score is provided, 
computed using the perceptual metric of Wang et al. [12] discussed previously. For our 
studies, HD resolution videos were considered, and a selection4 was made according to a 
combination of visual inspection and the provided banding score, selecting videos where 
banding was visible. The selected frames can be seen in Figure 2. 

To further challenge the tested methods, we considered two possibilities. One option was to 
artificially increase quantization artifacts through bit-depth reduction, as was proposed by 
Kapoor et al. [23] in the construction of their banding dataset. The second option considered 
was to re-encode the videos using more aggressive compression settings, therefore 
amplifying banding and other compression artifacts. We opted for the latter option, as in our 
view represents a more realistic scenario and better corresponds with typical artifacts that 
may be encountered, especially in the use case of SDR to HDR expansion, where 6-bit or 
lower bit-depth sources are unlikely to be encountered. 

In total, 10 video sequences were selected. Individual representative frames were extracted 
from each sequence, and each selected frame was processed with the chosen debanding 
methods (see Table 1). Together with the uncorrected source frames, 5 alternatives were 
thus included for each image, for a total of 50 stimuli for the first study. 

 

Figure 2: Selected frames from YT-UGC dataset. 

For the second study, several peak luminance levels were considered when converting to 
HDR to assess whether the visibility of banding is affected by the content luminance. To 
keep the experiment duration reasonable, a subset of the debanding methods was used in 
this case. Specifically, in addition to the uncorrected images (SRC), the best two methods 
were selected following the results of the first study, namely the FFmpeg ‘gradfun’ filter 
(FFG) and the full adaptive debanding filter approach, including the dithering post-process 

 

3 https://media.withyoutube.com/ 
4 Selected sequences from the YT-UGC dataset: Animation_1080P-3dbf, Animation_1080P-6ec0, 
LiveMusic_1080P-2930, LiveMusic_1080P-6b1c, NewsClip_1080P-2eb0, Animation_1080P-18f5, 
MusicVideo_1080P-16e6, Sports_1080p-19d8, NewsClip_1080P-7816, Lecture_1080P-238b 
 



        

[7]. The number of different scenes considered was also reduced, keeping the 5 images 
where banding was more visible. 

Experimental Procedure 

The experiments were carried out on a calibrated Sony BVM X300 display, set to SDR mode 
(2.4 gamma, BT.709 color space), with a 100 cd/m2 peak luminance for the first study, and 
set to HDR mode using the PQ EOTF and BT.2020 color space for the second study. In 
both cases ambient lighting was low.  

To reduce potential order effects (due to participants becoming more familiar with the task 
or certain images, or due to fatigue), each participant saw a random permutation of the 50 
stimuli in the SDR study. An image presenting natural (1/f) noise was shown after each 
stimulus. In the HDR study, a somewhat different procedure was chosen as different 
luminance levels were considered: stimuli were presented in blocks of increasing luminance 
(203 cd/m2, followed by 600 and 1000 cd/m2). For each luminance level, the order of 
methods was randomized, as well as the overall order in which image blocks were 
presented.  

Participants were asked to rate each image they saw in terms of visibility of banding (VIS), 
and overall image quality (QUAL). Both criteria were rated in a Likert-like 5-level scale, going 
from low (1) to high (5). No time limits were enforced, and participants chose a comfortable 
viewing distance but were allowed to approach the display for close inspection.  

RESULTS 

The goal of the described studies is primarily to assess how the visibility of banding changes 
with dynamic range expansion and how robust debanding methods are against that. The 
first study serves to obtain a baseline of the visibility of banding in SDR images and how 
different methods perform. The HDR study expands upon the findings of the first, exploring 
how banding visibility is affected by the luminance target in luminance expansion, and 
evaluating the robustness of debanding methods when used as a pre-process prior to SDR-
HDR up-conversion. 

 

Figure 3: Mean VIS (left) and QUAL (right) scores for the tested methods for the SDR study, 
with standard deviation and standard errors shown.  



        

SDR user study 

In total, 10 participants took part in the first study. Aggregating the obtained scores for each 
method, we obtain mean visibility (VIS) and quality (QUAL) scores as shown in Figure 3. 
We observe that all correction methods lead to a lower banding visibility on average relative 
to the uncorrected sources, with FFG and ADBd showing the best performance.  

To further analyze these differences, t-
tests were performed for each method 
pair to assess whether their differences 
could be considered significant (Table 
2). We can observe that FFG shows 
significant differences against SDR, 
FFDB and ADB (p < 0.05), while the 
results of FFG and ADBd are not 
statistically different, despite the 
observed differences in mean. All other 
results are not significantly different 
considering even the rather 
conservative threshold of p < 0.1.  

We might expect these differences to amplify with a larger pool of participants, however it is 
interesting to note that the majority of debanding methods are typically demonstrated in the 
context of banding due to low bit-depth corrections, while in our case a more realistic 
scenario was chosen where banding and compression artifacts are mixed.  

All stimuli were evaluated not only for the visibility of banding (VIS) but also the overall image 
quality (QUAL), allowing us to assess how the two criteria relate. A Spearman correlation 
value of R = -0.34 was found, suggesting a weak negative correlation between them: as the 
visibility of banding increased, the overall perceived image quality decreased.  

HDR user study 

 

Figure 4: Mean VIS and QUAL scores for the tested methods aggregated across the three 
peak luminance conditions of the HDR study. 

Based on these preliminary results, to assess the effect of luminance expansion on the 
visibility of banding, we chose to focus on the best two methods identified, namely ADBd 
and FFG. 10 participants took part in this second study. A similar analysis was performed 
for the HDR study as described in the previous section to assess the performance of the 

 
FFDB ADB ADBd SRC FFG 

FFDB 1,00 0,59 0,96 0,36 0,07 

ADB 0,59 1,00 0,57 0,70 0,02 

ADBd 0,96 0,57 1,00 0,26 0,12 

SRC 0,36 0,70 0,26 1,00 0,01 

FFG 0,07 0,02 0,12 0,01 1,00 

Table 2: T-test results between pairs of 
methods across all participants and images for 

the SDR user test VIS scores 

 



        

different methods. Figure 4 shows the aggregated VIS and QUAL means for the tested 
methods. From these results, we observe that the tested methods overall maintain the same 
relative ordering as in the SDR study, with FFG outperforming ADBd, and both methods 
leading to lower banding visibility and higher image quality relative to the source. T-test 
results for each method pair show that these differences are significant (Table 3). 

To better understand how luminance affects the 
visibility of banding, mean VIS and QUAL 
scores were also computed for each peak 
luminance level, shown in Figure 5. Banding 
was deemed less visible in the lower luminance 
condition (203 cd/m2), however results for the 
600 and 1000 cd/m2 conditions were very 
similar. T-tests between pairs of luminance 
levels are shown in Table 4, confirming the 
above observations.  

 

Figure 5: Mean VIS scores and errors for 
each luminance level. 

 

 
 

203 600 1000 

203 1.00 0.006 0.006 

600 0.006 1.00 0.88 

1000 0.006 0.88 1.00 

Table 4: T-test p-values comparing VIS 
scores for each pair of luminance values 

Interestingly, this is consistent with the non-linear nature of light perception [24]. As an 
example, Figure 6 shows the relation 
between linear luminance the lightness 
channel taken from the CIELab 
perceptual color space, where it can be 
seen that as luminance levels increase, 
their perceptual distance compresses.  

To better understand how the luminance 
level used in the SDR to HDR expansion 
interacts with the different debanding 
methods, means were also grouped by 
method for each luminance level and 
vice versa, shown in Figure 7. In all 
cases, the 600 and 1000 cd/m2 
conditions were very close to each other, 
as was observed in the aggregated 
results. Further, the relative performance 
of the tested methods was consistent 
across luminance conditions. A two-way 

 

Figure 6: Luminance is perceived in a non-linear 
manner, compressing perceived differences as 

luminance levels increase. 

 

 
SRC FFG ADBd 

SRC 1,000 0,000 0,000 

FFG 0,000 1,000 0,001 

ADBd 0,000 0,001 1,000 

Table 3: P-values between method 
pairs for VIS scores from the HDR 

study 

 



        

ANOVA assessing both methods and luminance level conditions showed that both 
conditions lead to significantly different behaviors individually (p < 0.0001 both). Consistent 
with what can be observed in Figure 7, no interaction was found between the two conditions 
(p = 0.9). 

 

Figure 7: Detailed results grouping mean VIS scores by luminance (left) or method(right). 

COMPARISONS WITH BANDING METRICS 

As previously discussed, several metrics have been proposed for blind assessment of 
banding [12], [13], [17]. Here, we compare our findings with the predictions of the BBAND 
index [17], which also serves as a basis for the AdaDeband correction method [7].  

We first computed the correlation of average VIS scores obtained from the SDR user study 
for each image and the corresponding BBAND prediction. Although the images used in our 
study are somewhat different to the banding scenario for which the BBAND index is 
optimized (low bit-depth), we find reasonable correlation when compared with the source 
images. This is consistent with the banding scores provided for each source sequence within 
the Youtube UGC dataset, which are computed using the perceptual metric of Wang et al. 
[12], leading to a Spearman R of 0.57 and a Pearson R of 0.53 when compared against our 
user scores. The BBAND index was less able to predict banding after different corrections 
were applied, despite users still perceiving banding artefacts (see Figure 3). 

Comparing the BBAND predictions against our HDR 
findings for the up-converted HDR images (Table 5), 
we can observe that for higher luminance values, the 
banding index is better able to predict the presence 
of banding, while for the 203 cd/m2 condition, no 
correlation is found. Perhaps surprisingly, a stronger 
correlation is found for the 600 and 1000 cd/m2 HDR 
conditions than for the SDR source images. 
However, this be can possibly explained by the fact 
that luminance expansion tends to stretch the higher 
parts of the luminance distribution, exaggerating 
banding in bright areas. 

 203 600 1000 

Spearman  0,00 0,45 0,60 

Pearson -0,05 0,91 0,86 

Table 5: Correlation between 
average VIS scores for HDR up-
converted images with no 
correction at different luminance 
values and BBAND index. 

 



        

DISCUSSION 

The above presented studies raise several interesting observations. In the case of SDR 
images, the tested methods certainly show a positive effect in reducing the visibility of false 
contours and simultaneously increasing the perceived image quality. However, this effect 
was relatively minor in the type of images and artifacts that we selected, suggesting that 
debanding methods are perhaps less effective when banding is confounded with 
compression artifacts. It should nevertheless be noted that the pool of participants for our 
study was relatively small, and the observed effects would likely be strengthened with a 
larger number of participants.  

Moving onto the HDR results, we note that no banding correction methods have been 
designed with HDR imagery and luminance expansion in mind to our knowledge. Whether 
explicitly stated or not, existing methods assume that content will be SDR and gamma-
encoded, and have certain expectations in terms of how images are likely to be viewed. 
Nevertheless, if we consider contrast sensitivity, it is well-known that the luminance of the 
signal plays an important role [25]. 

Indeed, by examining how the results of the BBAND index correlate with the scores of our 
user study, we note that the peak luminance targeted during SDR to HDR expansion 
significantly changes how well such a metric can predict the presence of banding.  

In our tests, debanding methods were used as a pre-process on the input to the SDR-HDR 
expansion, and had no knowledge of how the image luminance was expanded. As we saw 
though, the targeted peak luminance had a significant effect on how banding was perceived, 
irrespective of whether a correction was applied prior to expansion or not, suggesting that 
to effectively treat banding in the context of luminance expansion, the complete processing 
should be considered. 

This can be achieved in two manners. HDR up-converted images could be treated with a 
debanding approach after expansion. Although no HDR-adapted debanding methods exist 
yet, a CSF-based solution could be developed incorporating a model such as the one 
proposed by Denes et al. [26] in the banding detection process. However, in many scenarios, 
it would be desirable to perform the debanding prior to luminance expansion, e.g. if content 
is converted to HDR on the client-side (TV, set-top box etc.), thus also ensuring that the 
source is of as high a quality as possible.  

To that end, an interesting avenue for future work opens through recent developments in 
CNN-based bit-depth expansion and debanding. Networks such as BitNet [20] or the 
network of Zhao et al. [21] are trained on pairs of high and low bit-depth images to learn how 
to correctly reconstruct details lost due to quantization. Their ‘understanding’ of banding is 
therefore implicitly based on the differences between the two images, an approach which 
cannot be readily employed in the context of debanding prior to luminance expansion.  

A potential solution can be found in [21], where Zhao et al. supplement their network with 
an external flat area detection, guiding how each image area should be treated. In a similar 
vein, such a network could be enriched with a banding detection block instead, itself trained 
to predict banding in SDR images through SDR-HDR pairs at different luminances through 
the help of a CSF model covering extended luminance levels. In this case, banding 
correction would take the more traditional form of detection followed by filtering, as is the 
case with most existing approaches, while at the same time taking advantage of the 
predictive power that a CNN can offer to accurately detect banding in SDR images with their 
ultimate HDR target in mind. 



        

CONCLUSIONS 

In this work, through a series of user studies, we evaluate the effectiveness of different 
debanding methods and explore how the visibility of banding changes with luminance, 
specifically in the context of SDR to HDR luminance expansion. Our findings suggest that 
the visibility of banding is amplified with luminance expansion and that false contour artifacts 
become increasingly visible with higher peak luminance. Current debanding methods are 
limited to SDR imagery, and are not sufficient for correcting banding artifacts if used as a 
pre-process prior to HDR up-conversion. To effectively address banding in this scenario, 
banding visibility would have to be assessed by considering not only the content of the SDR 
image but also how the final HDR image will be encoded and viewed, a task for which 
existing CNN-based debanding solutions could be extended, by explicitly considering 
banding visibility as determined by contrast sensitivity models.  
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