

CLOUD‐BASED AI FOR AUTOMATIC AUDIO PRODUCTION
FOR PERSONALISED IMMERSIVE XR EXPERIENCES

R. G. Oldfield1, M. S. S. Walley1, B. G. Shirley1 and D. L. Williams2

1 Salsa Sound Ltd, UK and 2 BT, UK

ABSTRACT

In this paper we focus on the machine learning approach we have
developed for automatic audio source recognition and mixing for the UK
DCMS funded collaborative project called 5G Edge-XR. Leveraging GPU
acceleration, we deployed innovative algorithms in the cloud so that content
can be automatically mixed on-the-fly for a personalised, immersive and
interactive experience for audiences. In particular we will describe the
algorithms involved, the system architecture and how it has been
implemented for immersive live boxing and also how we are using it to
enhance a live in-stadium experience.

INTRODUCTION

In this paper we present work being carried out in the UK DCMS funded, 5G Edge-XR
project. The project is led by BT and is a collaboration between several SMEs, The
University of Bristol and a Dance school in the UK. The project is exploring how a
combination of 5G connectivity and a GPU cloud capability at the network edge can affect
the delivery and experience of immersive experiences including those based on augmented,
virtual and mixed reality – collectively ‘XR experiences’, to consumer devices including
headsets, smart glasses, phones and tablets. The project includes a particular focus on real-
time experiences where the viewers can change the content viewpoint freely on an AR
headset with the rendering being done live, in real-time in the cloud and delivered to the
end-user over a 5G network.

The AV content used will depend on the use-case but will be made up of volumetric video,
broadcast production content and additional data and video feeds which the user has control
over the rendering of. Traditionally, it would not be possible to facilitate these experiences
for the end-user without viewers having a fast internet connection and a powerful GPU
capability in their consumer devices with the compute power to drive the bespoke audio and
visual representation. In 5G Edge-XR we are exploring the use of 5G networks for the
provision of high the bandwidth links required to send the live AV components to a cloud-
based GPU capability at the network edge which performs computation and rendering in
order to deliver the live personalised content to the end-user device over the 5G network.

This paper focuses on the audio system of the project and in particular the machine learning
approach for automatic audio source recognition/extraction, composition and mixing.
Leveraging GPU acceleration, we have deployed these innovative algorithms in the cloud
so that content can be automatically mixed on-the-fly for personalised, immersive and
interactive experience for audiences. The paper is structured as follows. We will begin by
outlining the 5G Edge-XR project, its motivation, technical features, architecture and use

cases and proceed to discuss the (object-based) audio system in more detail, highlighting
in particular the AI-driven audio source analysis, extraction and composition engine. Next,
we will describe how the audio scene can be rendered in the Unity gaming engine to match
the visual presentation and finish up with a discussion on the project outlook and
conclusions.

5G EDGE XR PROJECT

5G Edge-XR will demonstrate that 5G networks, coupled with cloud graphics processing
units, will enable users to view sporting events from every angle in a totally immersive
experience. These experiences will be available on a range of devices including
smartphones, tablets, AR and VR headsets and TVs. This approach will underscore the
vision and potential of 5G networks and how it can transform content composition and
delivery, bringing new experiences to many sectors

Project/system architecture

The end-to-end chain of the experiences in the 5G Edge-XR project can be represented as
in Figure 1 below. Assets are generated, possibly in real-time from cameras and
microphones, and are encoded and uploaded to the GPU processing system. The processor
renders the assets into a scene and generates, using knowledge of the pose and orientation
of the client device, a view onto that scene and renders both visual and audio streams to
represent the view from that position. In this configuration the requirements of the client
device are relatively simple; they are required to present pose and orientation requirements
to the GPU processing and to be able to decode and present an AV signal. The client enjoys
the privilege of then being able to choose from which to view the rendered scene.

Figure 1 – End to end chain simplifying and generalising the process by which the scene
the end user views and hears is generated.

The logical and physical location of the GPU affects the end-to-end delay budget. Internet
based cloud resources typically add 20-30ms to the round-trip time. Thus, siting the GPU at
the logical edge of the network (see Figure 2), prior to exiting the network via a peering node,
we hope to reduce the end-to-end delay and expect this to result in a better, more responsive
user experience.

Figure 2 – Simplified network routing between the mobile device and the GPU cluster from
where the experience is streamed, with associated estimated round-trip delays.

In some use cases the scene generated may be a near real-time render of a volumetric
capture. In this work we are using a dance lesson and a boxing match as exemplar scenes
that are being observed and captured volumetrically. In time, as the technology evolves the
size of the scene captured may increase to include a whole theatre stage, a television studio,
a tennis court or even football or rugby pitch.

Volumetric captures generate huge amounts of data, from cameras and depth sensors
which must be analysed and encoded as point clouds and textures which are transmitted to
the GPU cluster to be rendered, frame by frame, into a photorealistic hologram. The real-
time challenge is to generate a virtual camera view onto the rendered scene which is
sufficiently similar to the image formed from a real camera placed at the same position as
the virtual camera within the scene. Achieving that structural similarity requires complex
calculations well suited to GPUs, including real-time rendering, AI and deep learning to
improve encoding methods.

Alongside the development of the visual point-of-view, another challenge, as discussed in
this paper, is the task of generating a soundscape appropriate to the position and content of
the virtual camera.

Use cases

There will be several use cases that will be demonstrated as part of this project. For the
purpose of this paper, we will discuss only the boxing and in-stadium demonstrations.

Boxing

The boxing use case involves the generation of a photo realistic hologram which, using AR,
may appear to be situated on viewers’ coffee tables. This is powered by the volumetric video
capture and composition by project partner, Condense Reality. In the concept it will be
possible to observe the action from any angle, on smartphones, tablets and AR headsets.
The presentation will be synchronised with the live TV Broadcast feed and will contain
interactive elements allowing the viewer to personalise their presentation. For example, they
may include the ability to select a
replay from a list of replays or to
interact with graphics to provide more
information - for example to choose
whether or not to include data panels
providing real-time information about
the bout and the pugilists etc.

In the concept being built, the
experience will be editorially driven
with commentary and automatic
replays. Because viewers can walk
around the hologram that appears on
the coffee table it is obvious that the
audio must change to match the
changing perspective of the viewer. The viewers will experience an audio ‘bed’ with the main
(background) audio feed but as they add/remove content and navigate within the scene they
will also have overlaid a bespoke audio feed which will match the visual representation. For
example, we will isolate each audio source and localise it to the correct place in the scene
so that the sound of each punch and shout of each trainer can be panned to the correct
location relative to the viewing angle of each viewer. The challenge from an audio

Figure 3 – 5G Edge-XR boxing use case concept

perspective therefore is to be able to extract each sound source/object and localise it in
space in real-time within a noisy environment. As described later in this paper, we have
approached this challenge using a real-time deep-learning technique based on the raw input
audio. In addition, we will be leveraging the power of the cloud to perform speech-to-text
and other metadata extraction routines to drive more content and personalisation for
viewers.

In-stadium

Typically, there are over 700,000 fans attending stadiums for English football matches every
week in the UK and as a result there is a drive by many clubs to reimagine and improve the
perceived value of a matchday ticket. An important part of this is the use of appropriate
technology to enhance the experience by providing unique access to in-stadium content an
enable fans to get an enhanced/improved in-stadium experience. New content is also a way
of mobile service/content providers promoting themselves above the competition.

The in-stadium, use case will hence
demonstrate an AR football
experience for sports fans within
stadia. Again, viewable on AR
headsets, phones or tablets, viewers
will have the option to have stats/data
overlaid onto the scene they can see.
This may include player names,
virtual off-side guides, gain lines,
refereeing decisions etc. Also
available will be text overlays
synchronised to the commentary,
replays shown on virtual jumbotron
screen, video from other camera
viewpoints and alternative partisan commentaries. Our audio engine will be used again to
segment and analyse the audio feeds to drive graphics overlays and additional content. For
example, we use the sound of the referee’s whistle for accurate localisation and trigger a 3D
speech bubble of their communications locked to their location for improved accessibility,
additionally on-pitch sounds can be isolated and panned to the correct position relative to
the viewer to bring the fans closer to the action

Other project use case

XR technologies have potential applications in almost all industries including engineering

and architecture, live performance, medical imaging, education and retail. Use cases

addressing some of these additional deployments will be explored within the 5G Edge-XR

project.

Getting content to the edge

As with any cloud-based or remote live production a key element is the ability to get the
captured content up to the cloud in an efficient manner with all content clocked and synced
correctly. The 5G Edge-XR project will be using a 5G contribution network with the raw
microphone signals sent to the edge directly. We will be using DANTE capture devices on
premises with DANTE Domain Manager managing the network and a DANTE virtual Sound

Figure 4 – 5G Edge-XR in-stadium use case
concept

card running on the server to pull the audio feeds in to the edge compute where the audio
processing will be done as described in subsequent sections of this paper.

OBJECT-BASED AUDIO

One of the biggest challenges for the 5G Edge-XR project and other similar technologies is

how to capture the scene in such a way that as much content and information about the

content is preserved as possible while retaining well established broadcast production

workflows. In addition to the audio content being captured, it is imperative that substantial

metadata describing the content is also captured or extracted from the scene to enable

correct, bespoke rendering at the user end. Consequently, the adoption of an object-based

audio paradigm to be able to facilitate requisite personalised, immersive audio. An object-

based paradigm is fundamentally different to traditional channel-based approaches as

instead of mixing audio content for a target system, the audio components and descriptive

metadata are retained as discrete assets right through the production chain for bespoke

rendering at the user end.

Channel-based systems mix the audio content for a specific audio output format (stereo, 5.1
etc) using the available audio sources at the capture end. Once this content has been mixed
it is not possible to manipulate it or personalise it at a later stage as all of the components
have been ‘baked in’ to the audio content stream. An object-based paradigm differs in that
the individual elements are composed at the capture end but are kept separate right through
the broadcast/signal chain so at any point, sources can be added, moved or manipulated
right up until the point of rendering. This has several advantages, both in terms of a format
agnostic audio rendering (i.e., it can be played back over any output system) and also in
that it enables sounds to be added, removed, altered or panned around etc., for personalised
rendering. It is hence apparent that to enable adaptive and personalised rendering for the
5G Edge-XR project an object-based paradigm is essential. Fundamental to an object-based
system are the ‘audio objects’ that we will define here as the discrete sounds in the scene,
usually rendered at a specific point in space, and the ambient beds which make up the
immersive background sound on to which the audio objects are overlaid.

Audio objects

In any audio scene there will be many discrete sound sources that can be described as
coming from a specific location and that will have defined audio characteristics. Such ‘point’
type sources can be defined as audio objects. The term ‘audio object’ is also used to
describe any audio asset that can be added or removed from a sound scene/composition.
This might include the sound of a racket strike in tennis, the microphone feed of the umpire,
the commentator and the PA for instance. Audio objects are typically discrete audio sources
with accompanying metadata describing their location, type, duration and other
attributes/signal statistics. Describing the audio scene in this way and keeping the assets
separate right up until the end user, means that the end-user has full control of their audio
mix and are able to add/remove/reposition and interact with any aspect of the mix (within
the bounds allowed by the broadcaster).

Ambient ‘beds’

Aside from the discrete sound source/objects that are in a scene there is also the
ambient/background sound that needs to be captured in a spatial sense such that a faithful
reproduction of the scene can be rendered for the end user. It may be that there are several
ambient beds that are used to describe and audio scene and confusingly these can even be

referred as ‘objects’ that can be interchanged/mixed together if necessary. For example, in
a sports context there may be a base crowd sound, a home crowd sound and an away crowd
sound and a user could have a choice over the feeds they add in to their final mix.

There are different approaches to capturing the ambient bed on to which the audio objects
can be superimposed. It is possible to have a bed consisting of a 5.1 capture for example,
or more complex descriptions of the overall sound scene can be included, utilising
technologies such as ambisonics [Gerzon (1)] which is a means of describing an audio
scene in terms of its spherical harmonic components such that the scene can be efficiently
captured, transmitted and then decoded for reproduction. The more recent introduction of
higher order ambisonics (HOA) brings increased spatial resolution to the format [Bertet (2)]
and is the preferred audio format for several popular 360° video platforms. Interaction within

an ambisonics scene is generally limited to rotation and, to some extent, zoom. For this
project we have adopted a second order ambisonics capture for the bed.

Metadata

The audio system for the 5G Edge-XR project requires that the audio objects and sound
field/bed descriptions are not only captured with a high level of accuracy but that the
rendering be done on-the-fly, matching the viewer’s perspective of the scene. An important
part of the system therefore is the metadata accompanying the audio data which will
describe the scene and will be fed right through to the rendering engine to enable the
manipulation of the audio output to match what the viewer is seeing in real-time. Perhaps
the most important aspect of this metadata for immersive applications is the location of each
audio object which has to be determined and in many cases is non-trivial as sounds cannot
always be tracked and there are often high levels of background noise at e.g., live sports
events.

S-ADM Stream

Once the requisite metadata parameters have be extracted from the scene, a stream needs
to be composed that is linked with the audio components so the render can use the
information to compose the final sound stage at the user end. The chosen metadata format
for this project is the Audio Definition Model (ADM) (3). ADM is an ITU-R BS.2076-2
metadata specification that can be used to describe object-based audio, scene-based audio
and channel-based audio. ADM allows the description of many audio and scene aspects
such as the position, time and type of audio source as well as the input and output audio
formats. It can even be included in BWF WAVE files or used as a streaming format in
production environments so fits the purpose of the project very well. The ADM model is
divided into two sections, the content part, and the format part. The content part describes
what is contained in the audio, so will describe things like the language of any dialogue, the
loudness, location and so on. The format part describes the technical nature of the audio so
it can be decoded or rendered correctly. Some of the format elements may be defined before
having any audio signals, whereas the content parts can usually only be completed after the
signals have been generated. The content elements can edited/ authored at any point in the
production chain.

In order to facilitate the real-time aspects, we will use serialised ADM (S-ADM) (4) as it is
extremely versatile and well suited for object-based audio content. S-ADM sends
consecutive ADM data frames, updating any changes in the audio scene from one frame to
the next. Reading these ADM frames into the system in real-time enables the dynamic
manipulation of the audio sources to match any type of control system, whether that be

automatic from the user’s headtracking or manually via an audio scene authoring tool. S-
ADM allows us to adapt the audio scene and rendering in real-time for a personalised,
immersive rendering for all users and so has been chosen as the metadata format for this
project.

THE AUDIO SYSTEM

In the past, real-time audio processing in the cloud has been difficult due to bandwidth
limitations. These limitations could be somewhat reduced by compressing the audio;
however, this is not possible if the processing is part of the main signal path due to the loss
in audio quality that comes with many compression techniques. A method of bypassing
these limitations, often used in mixing, is to keep audio processing local but to have an
application that interacts and controls the processing through the cloud. A 5G network
greatly improves the amount of bandwidth available to such a point that transmitting multi-
channel uncompressed audio into the cloud is possible.

The 5G Edge-XR audio system architecture is shown in Figure 5. The raw microphones are
ingested at the event and are uploaded to the cloud/edge over the DANTE contribution
network. Through the Dante virtual soundcard, these microphone feeds are input into the
audio event extractor and semantic analysis engine which compiles an audio scene
consisting of the objects, beds and associated metadata. The metadata stream and audio
mix can be manipulated with the remote GUI and/or the broadcast mixing console. In
addition, there we are running semantic analysis on some of the audio streams/objects to
generate more metadata that can be used later on in the signal chain to drive the end-user
experience. The metadata in the system can be edited by any of the processing/input blocks
including the volumetric video capture which can update and add key positional data. The
audio content is then synced with the video stream and the objects, sound field beds and S-
ADM stream are fed into the Unity game engine for scene compilation. The Unity scene sits
in the cloud and when clients connect to the server, they are delivered a bespoke audio and
video representation to match their perspective and preferences.

Figure 5 – 5G Edge-XR audio system diagram

AUTOMATIC AUDIO PRODUCTION IN THE CLOUD USING AI

Traditionally, the mixing would be done on the premises and an output mix will be created
in an OB truck for a given output format/target system. For the 5G Edge-XR project, the AI-
driven mixing engine has been ported from the premises to the cloud. One of the benefits of
running the audio analysis, processing and mixing in the cloud is that the processor power
can be greatly increased with GPU acceleration. This increases what can be done with audio
analysis and can enable more complex processing tasks like real-time audio object
extraction, localisation and semantic analysis on the incoming streams. Furthermore, the
cloud-based audio mix engine enables automated content composition for different
audiences.

Extracting Sound Sources

Capturing a scene in an object-based way presents some challenges and requires some
alterations in the way that content is created/mixed to ensure that the individual sounds at
an event e.g., the sound of a punch in boxing, the racket strike in tennis or the sound of a
ball being kicked etc. are detected and extracted as separate sources. The way that this is
done at the capture end depends somewhat upon the context and the audio extraction
techniques will vary accordingly. Fundamentally however we employ machine learning
techniques that analyse various representations of the audio signal to learn complex
patterns that allow them to detect when specific audio events occur. The audio signal
representations used are also context dependent since audio events have different
characteristics which are presented through a range of features. The selection of these
features is based upon which ones will show the most differences between the event and
any other audio. This will help the AI pick up on patterns which will ultimately improve its

detection.

An overview of our AI approach to audio capture and extraction is shown in Figure 6. Audio
templates are derived based on perceptual models of the salient sound sources in the
current context and a neural network trained on content from the same context enables very
accurate detection and classification of the audio events of interest in real-time. If several
microphones capture the same audio event, the signals are triangulated using an efficient
optimization algorithm, creating positional metadata to help automatically facilitate spatial
and immersive mixes.

Figure 6 – AI system overview diagram

Figure 7 – Example convolutional audio network diagram

Figure 7 shows an example convolutional neural network model used for detecting highly
transient audio events, such as punches in a boxing match. Here, a Mel spectrogram is used
as the representation of the audio data. The neural network is fed eight consecutive
spectrograms that were created from FFT windows of 1024 samples with a 256-sample
overlap. This overlap is necessary due to the transient nature of the event. The data forms
a two-dimensional grid which is normalised and then passed to the input layer of the neural
net. The convolutional layers move through the data analysing each 2 x 2 window. These
windows have filters applied to each value to attempt to recognise patterns in them. In this
case, the size of the window and the nature of the data means that the first filter will be
looking for patterns in a space of two Mel filters in two Mel spectrograms.

In between the two convolutional layers a max-pooling function reduces the size of the data
by moving through it in windows of 2 x 2 and reducing that window to one value equal to the
maximum value in that window. The data is then flattened to a single dimension and passed
through a sequence of Dense layers. Each of these layers contains a number of nodes which
are connected to every other node of the previous and next layer. Each of these connections
has a weight which determines how important the first node is to the value of the second
node. Data moves through these layers being multiplied by the weights to create the value
of the single node in the last layer of the network. It is this value that represents how
confident the network is that an event occurred. Two of these layers are dropout layers that
will randomly zero nodes. This is useful during training to prevent overfitting, but is not
applied during the normal running of the network.

With transient events, a second non-neural network detection approach can be applied in
tandem to the neural net in the form of an onset detector. This can be used as a filter to limit
the number of false positives produced by the network. This is useful in the case of real-time
audio event detection since even with a low percentage of false positives, the network is
being run so often (187 times a second at 48kHz with a 256-sample hop size) that many
false positives can be produced in a short space of time. The onset filter is set up so that
audio is only passed to the neural net if there was a significant transient detected. This can
be extended to a multi-microphone set up by using the onset filter and neural network in one
microphone to attempt to detect an event. If this triggers that an event was detected the
onset detectors of the other mics can be bypassed for a certain amount of time. It is likely
that the microphone which first picked up the transient is the closest microphone to the event
and thus by bypassing the onset detectors of the other mics we can still pick up the event in
multiple microphones without being limited to just those which are close enough to detect a
transient.

The AI is written in C++ using TensorFlow so is cross-platform compatible but has been
deployed in this case on the Linux edge compute server to make use of the GPU
acceleration from the project’s server. This GPU acceleration is vital for the use cases stated

above, since AI processing is computationally very expensive and needs to run on multiple
audio channels simultaneously. GPU acceleration also allows for us to push our AI models
further than would be possible with a CPU approach. Required computational power for the
AI to perform increases with the amount of input data fed into it. Therefore, the GPU
acceleration allows us to pass more
audio signal representations to the AI
to give it a better understanding of
what is happening in the scene.

From the content analysis and
extraction, we create content flags that
can be used to create mix decisions
(within a traditional framework) or to
trigger pre-recorded content to
enhance broadcast audio.
Additionally, these flags can be used
to localise the sound sources as
described below. The process flow is
shown in Figure 8. The individual
‘audio objects’ are packaged up with
localisation and other metadata as a
scene description which can be
manipulated later in the production
chain.

Localising sound sources

To be able to create audio objects for
immersive contexts it is important that
individual sources are accurately localised in the scene and corresponding metadata
authored. This means that as the viewer navigates their visual perspective on the content,
it is possible to correctly move sound sources around so that they match the location of the
visual sources.

To facilitate this, we have employed a triangulation routine. The triangulation methodology
varies dependent upon the capture setup but typically is done using the time difference of
arrival (TDOA) between signals of different microphone pairs picking up the same source.
Knowing the location of these microphones allows the source to be positioned on a
hyperbolic path between the two microphones. If the same source is picked up in additional
microphones, there will be additional hyperbolae and the overlap between the resulting
curves enables the accurate positioning/triangulation of the source. Determining the TDOAs
can be a challenge using traditional algorithmic methods such as cross-correlation due to
the high background noise of live events so we use our AI to extract the time stamp of source
detection in each microphone to determine the TDOAs for a more robust approach.

Determining the overlap of the resulting hyperbolic paths from the triangulation can also be
cumbersome and computationally inefficient so for a real-time approach we have adopted a
least squares search grid approach where we look for the most likely source position based
on a set of microphone TDOAs. For each square in the search grid, the amount of time it
would take for a sound originating in this square to reach each microphone is recorded.
These are then adapted to be relative to the closest microphone to each square which gives
the relative TDOAs for that square. When a set of microphones all detect the same audio

Figure 8 – process flow for the audio
extraction system

event, the sample numbers at which each microphone detected the sound is recorded.
These are then also adapted to be relative to the microphone which detected the event at
the earliest point giving the relative TDOAs for this event. The relative TDOAs for this event
can then be compared to the relative TDOAs for each square. The square in which there is
the least difference between the two sets of values is the square in which the audio event
occurred. The resolution of the search grid can be tailored to the context and available
compute power.

A practical constraint of performing the localisation in a live broadcasting environment is the
requirement of the on-site broadcast team to measure the microphone locations. This can
be problematic without specific equipment which limits the practical application of this
methodology. Using the power of the cloud for processing however we are able to determine
the location of not only the sound sources but also the position of the microphones as well,
using an iterative optimisation routine which takes multiple source detections.

Metadata

With an object-based audio approach, the content composition can be altered at any point
in the signal chain by additional processing stages and systems. For example, in the 5G
Edge-XR project, the volumetric video processing from Condense Reality is able to provide
additional positional data of the main sources or a region of interest in the space which is
used to correlate with audio source positions of the various objects in the scene. The
mechanism by which this happens is the S-ADM metadata stream which can be edited within
the signal chain either on the server or at the end-user device for a personalised experience.

AUDIO CONTENT RENDERING

Automatic mixing

When multiple, personalised mixes are required at the render end, it is imperative that there
is an automated mixing stage within the system architecture. Automated mixing can take in
the audio content, external location/tracking data and any individual viewing data to be able
to compile an immersive and personalised mix.

With the ability to add and remove the various objects/sources within the scene, the relative
balance of the various components needs to be automatically managed and the output
loudness monitored and scaled correctly. At the output stage of the signal chain, signal
loudness is measured and manipulated in accordance with EBU R128 and ITU BS.1770-3.
The parameters of this processing are editable so that different loudness standards for
different platforms can be achieved.

Rendering in a game engine for a personalised experience

The audio content needs to be streamed in to the Unity gaming engine as a scene composed
of various audio objects and ambisonic sound field descriptions in real-time so that the
output content can be composed and rendered in real-time in conjunction with the Condense
Reality volumetric video components.

While Unity supports real-time audio input through its Microphone feature (typically used to
allow users to input their voice into the game for voice commands and player to player
communication), its capabilities are limited in two main aspects. Firstly, this feature only
supports a single input audio channel and secondly this audio channel must come from a
system audio input device leaving no way to stream audio from an external application or
connection. These limitations are acceptable for player combination, however they become

problematic when all audio in a scene needs to be streamed into Unity in a multichannel
format as is the case for this project. Unity’s audio objects are usually connected to an
abstract audio provider such as a microphone or an audio file. This makes implementing
them fast and simple. The technique used to bypass these input limitations involves
interfacing with Unity’s audio engine at the lowest level. One of Unity’s audio objects are
created without a standard audio provider. Instead, a bespoke provider is implemented that
receives audio data from an external stream and passes it to the audio object through a low-
level call-back function. This call-back is usually used for applying effects to or analysing the
real time audio passing between the object and provider. Since this call-back allows for the
raw audio data to be read and manipulated, we are able to use it to pass our data into the
audio engine.

Audio output options are also limited by Unity. Unity only supports up to 8 discrete output
channels. Furthermore, channel positions in their configuration are not changeable. This
means that if an 8-channel output format is used, the output mix is rendered based on the
standard channel positions in a 7.1 audio format. This can be somewhat improved by using
a third-party spatialisation plugin, however this makes only limited additions, the most useful
of which for our purpose is a binaural output format. Ongoing work in this area is the creation
of a bespoke audio rendering plugin for 5G Edge-XR.

OUTLOOK

The 5G Edge-XR project is an excellent test-bed for what is achievable using fast 5G
networks that unlock the processing power GPUs in the cloud and opens the door for more
applications of AI in the cloud. New, more advanced audio processing and mixing
methodologies can be applied, facilitating not only future focussed immersive applications
as described in this paper but also enhanced methods of producing higher quality content
at a lower cost for current work-flows where there is a constant drive more content at lower
budgets.

CONCLUSIONS

This paper has described work underway as part of the UK DCMS funded 5G Edge-XR
project which aims to bring immersive XR experiences of live content to viewers on
consumer devices by harnessing 5G networks and cloud/edge compute power. The paper
has focussed on the audio engine, describing how an object-based audio system has been
facilitated by employing real-time AI in the cloud for the real-time creation and rendering of
audio objects. The object-based system allows for personalisation of the immersive content
to match the visual rendering of the content performed in the cloud.

REFERENCES

1. Gerzon, M.A., 1985, Ambisonics in multichannel broadcasting and video. J. Audio Eng.
Soc., 33(11): p. 859-871.

2. Bertet, S., et al., 2013, Investigation on localisation accuracy for first & higher order
ambisonics reproduced sound sources. Acta Acustica united w. Acustica, 99(4): p.642-657

3. Recommendation ITU-R BS.2076-2 (10/2019), Audio Definition Model

4. Recommendation ITU-R BS 2125-0 (01-2019), A serial representation of the Audio
Definition Model

