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ABSTRACT 

This paper discusses some key elements and solutions for efficient video 
compression. More precisely, we introduce key differentiating techniques 
for video signal quantization within modern hybrid video codecs. First, we 
recall the fundamentals about scalar quantization and Rate-Distortion (R-D) 
theory, then describe the different control points and levels of granularity for 
optimizing signal quantization into modern video compression standards. 
From this common knowledge, we discuss approaches in how to jointly 
optimize those various levels of quantization refinements for improved video 
encoding quality. Most notably, we explain how to take advantage of a look-
ahead module (available in most of industrial encoder implementations) to 
model spatio-temporal coding dependencies, and how to further compute 
optimal quantization information from an R-D standpoint for a group-of-
pictures (GOP). Complementary to this first approach, we share some 
insights about a Local Quantization Refinement (LQR) algorithm. Such 
algorithm is often ignored in practical encoder implementation due to its 
apparent complexity; we develop how and why it can efficiently work in real-
time software encoding. 

INTRODUCTION 

Video delivery from live event capture or content production to the final customer undergoes 
several stages of transformation along the chain. The initial compression applies at the 
contribution side to convey the video to a studio or production facility. Then, several 
compression and decompression steps occur in the ecosystem. At the distribution side, the 
video was historically broadcasted on traditional networks (terrestrial, cable, or satellite) as 
linear TV channels, and more recently IPTV services. Today, thanks to OTT services, new 
habits of video consumption have been created around the nonlinear TV combining live, on-
demand and various possible use cases (e.g. replay, start-over, follow-me, download and 
go, etc.). For all the market segments, video compression is the crux of the matter for 
bandwidth or storage savings, and for implementation cost reduction of the overall delivery 
chain.  

The motivation of this paper is to share some technical insights for efficient video 
compression. More precisely, we discuss some advanced features for video signal 
quantization, as one of the most fundamental processing steps in any video delivery 
solution. Complementary to this aspect, additional techniques related to pre- and post-
processing [1], that could be used for further optimization, are not addressed in this paper. 



        

Video Compression in a Nutshell 

Lossless compression is conceptually simple. It consists in exploiting signal information 
redundancy to reduce the data rate while no signal loss is introduced, such that the 
decompressed signal is strictly identical to the source signal. A lossless encoder tries to 
avoid sending what can be predicted by any means. It is commonly based on the principle 
of differential predictive coding (DPC). Any signal information to code is predicted from 
signal information already coded or known at the decoder. Then, only the difference between 
the source and prediction, i.e. the residual signal information, needs to be coded and sent 
to the decoder. Usually, DPC is complemented with transformation and entropy coding steps 
for further signal redundancy reduction. Prediction, transformation, or entropy coding 
capabilities are specified by the standards (e.g. H.264/AVC, H265/HEVC, H.266/VVC or 
VP8/9, AV1, etc.). In addition to the residual information, the prediction (eventually the 
transformation or entropy coding, etc.) model parameters to apply at the decoder side are 
also sent. The overall data flow to send to the decoder is responsible for the data rate (i.e. 
bitrate in case of binary signal coding). 

Lossy compression adds a lossy quantization step on-top of a lossless compression 
scheme. Residual signal information is quantized (integer division) to further reduce the data 
rate. This operation is irreversible, some data are lost and the decompressed signal is not 
strictly identical to the source signal. It introduces the notion of distortion which measures 
the distance or alteration between the original and the decoded signals.  

Hybrid Video Compression Standards 

Hybrid video coding is defined as the combination of a differential prediction (e.g. Motion 
Compensated Prediction (MCP)) stage and a transformation stage (e.g. 2D Discrete Cosine 
Transform (DCT)) of the residual signal. It can be lossless or lossy, i.e. with or without 
quantization stage. Most if not all the video codecs used for video delivery are based on a 
lossy hybrid video coding scheme. 

Figure 1 describes a generic lossy hybrid encoder as a block diagram. There are some 
subtilties depending on the standards, but basically, this generic architecture holds. As 
shown in Figure 1, the decoder reconstruction process is closed-loop into the encoder, such 
previous reconstructed samples can be used for prediction of the incoming video signal 
samples. The difference between the video input samples and its prediction produces 
residues that are transformed and quantized. The transformation is an operation that 
decorrelates and compacts residual signal information on fewer samples or coefficients. The 
transformed residues are then further quantized. The quantization is the only lossy element 
that this paper will focus on. Inverse quantization and inverse transform are part of the 
decoder reconstruction loop producing the distorted residues. They are added back to the 
prediction and (optionally) filtered to reconstruct the final video signal samples, identical to 
the one the decoder will obtain. The entropy coding block is a lossless compression engine.  

Processing blocks in red are fixed. They must be considered as automatons. Any change in 
their specified process at the encoder would produce a mismatch with the decoding process. 
In such scenario, the encoder would be non-conformant with the decoder as specified by a 
standard, and in the worst-case, the compressed signal would not be decodable.  

Conversely, processing blocks in green or dashed green are relatively free regarding what 
they output. The only constraint they have is to comply with the syntax (i.e. the processing 
model parameters) specified by the considered standard for being properly interpreted by 
the decoder. Solid green blocks, i.e. transform and quantization processing steps, have even 



        

more freedom, they could to its limit output null sample values for example. Finally, for a 
given standard, optimizing the video compression efficiency of an encoder is all about 
optimizing these processing blocks.  
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Figure 1: Generic Hybrid Encoder Scheme 

BASICS OF QUANTIZATION IN HYBRID VIDEO COMPRESSION STANDARDS 

Principle 

Once again, the concept of quantization is simple. The purpose is to map a set of values to 
a smaller number of values. Quantization is an irreversible process since it introduces data 
loss. This is where lossy compression stands: select a single representative for several 
values. 

Vector quantization is not covered here, only scalar quantization is considered in usual video 
coding schemes (e.g. Figure 1) where the transform process is already assumed to output 
highly decorrelated samples. 

In common encoders, the scalar quantization operation falls down to an integer division (with 
rounding) where the quantization step (QStep) is the denominator. For example, as shown 
Figure 2, dividing by 10 and rounding to the closest integer would quantize the range 
{0,1,2,3,4} to the value 0, and {5,6…., 13,14} to value 1, etc. The higher the quantization 
step, the stronger the quantization and the signal loss.  

The dequantization is specified and locked by the standard. Basically, it is a multiplication 
by the quantization step. If we come back to previous example, 0 is dequantized to 0 x 10 = 
0, 1 dequantized to 10, 2 to 20, etc. Overall, if we combine quantization and inverse 
quantization, the resulting effect is simply a rounding. 
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Figure 2: Example of rounding operation out of the scalar quantization/dequantization 

Recent advances in the quantization syntax coding are brought by VVC [2]. Indeed, by 
adding memory in the coefficient coding syntax, “dependent quantization” [3] achieves the 
coding of two possible quantized values with a single syntax element. The dequantization 
to apply at the decoder side depends on the path of previously decoded coefficients using 
a dedicated state machine. Nevertheless, the underlying mechanism remains scalar 
quantization. 

Rate-Distortion Optimization 

Consequently, quantization generates distortion: reconstructed signal samples are not 
identical to original signal samples. The distortion D, as a distance between the original and 
the reconstructed signals, is often measured using objective scores (e.g. PSNR, SSIM [4], 
VMAF [5], etc.) or based on subjective criteria and protocol (e.g. MOS, [17]). 

Overall, encoders try to maximize the video quality (i.e. minimize the distortion), while 
constraining to a target bitrate. Naively, this could be achieved by just lowering the 
quantization step to minimize the distortion, at the expense of a dramatic increase in the 
bitrate. Modern encoders are based on a trade-off of the two: called Rate-Distortion 
Optimization (RDO) [6].   

The rate R is the bitrate, it is just a matter of counting bits. At the opposite, the distortion D 
is not necessarily the standard Mean-Squared Error (MSE), as explained before it could be 
any other criterion. Most of commercial encoder providers in the Industry have researched 
and designed their own computable (i.e. real-time) D embedded into the encoding loop and 
accounting for Human Visual System (HVS) quality perception. In the hybrid video coding 
scheme of Figure 1, it is worth mentioning that distortions propagate, by design, from image 
to image through a Group-Of-Pictures (GOP). We built the framework, briefly described 
afterward, to account for the impact of this propagation on the video quality.  

QUANTIZATION IN MODERN VIDEO STANDARDS 

The quantization process in modern video standards is controlled at different levels by a 
Quantization Parameter (QP) and several optional refinement steps. In AVC/H.264 or 
HEVC/H.265, the QP ranges from 0 to 51. In VVC/H.266 the range has been extended to 
[0, 63]. For all these standards, the QP is used as an index to derive the quantization step 
(QStep), that doubles each time the QP increases by 6.  

The QP can be adapted either at the picture level, or using a finer granularity at the block 
(or coding unit (CU)) level, as shown in Figure 3. The picture QP adaptation is generally 
used to fulfil the global rate constraint (i.e. target bitrate) over a GOP, i.e. trading bits within 
the GOP to optimize the R-D criterion. For example, it may be appropriate to spend more 
bits on a frame used as a reference into a given GOP structure, since its errors will be 
propagated onwards by prediction. 
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Figure 3: Quantization control point hierarchy 

In addition to these two levels of QP adaptation, the quantization process can be refined 
down to the transformed coefficients (i.e. transformed residues), optimizing the quantized 
coefficient value selection. 

Picture/slice level 

The picture/slice QP is then used to compute the QP for the first block of a slice. If not further 
refined, this QP value stands for the whole slice (either a whole picture or a part of a picture).  

Complementary to the QP, and usually signaled at the sequence and/or picture-level, 
quantization matrices allow supporting frequency-dependent quantization. For each 
transform block size, the quantizer step can be adapted per frequential coefficient position. 
For instance, and in order to better match an HVS perception, low-frequency coefficients 
can be quantized with a finer quantization step compared to high-frequency coefficients. 
Within MPEG video standards, this is managed with scaling matrices, which are optionally 
transmitted in the sequence and picture parameter sets (SPS and PPS), and referred for 
use (or not) at the picture level. 

Block/CU Level  

Adapting the QP at the block or coding unit (CU) level is the cornerstone of compression 
efficiency.  

In most of the video codecs/standards, block QP value adaptation is allowed. Usually, to 
reduce the amount of data to transmit for each coding block, the local QP value is DPC 
coded. A QP prediction is made from neighboring blocks and previous QP in decoding order, 
such that only the delta QP, difference between prediction and current QP values, must be 
signaled.  

Again, only the QP prediction and signaling mechanism are standardized, that leaves us 
free to develop Adaptive QP (AQP) algorithms with various optimization criteria, various 
scopes (i.e. block level, frame level, GOP level), and various complexities. Typically, the 
block QP value could optimize the quantization level to the local characteristics of the signal 
and/or to the block pertinence in the prediction scheme, both to provide better visual quality.  

Adapting the local QP to local characteristics using RDO is an option for maximizing 
compression efficiency. As mentioned before, the purpose is to limit the distortion with 
respect to the rate. The distortion is linked to the QStep i.e. as QStep increases, the 
distortion increases. The rate evolution according to the quantization step is slightly trickier, 
as the rate depends on delta QP cost, the number of quantized coefficients, and their 
magnitude. The higher the QStep, the lower the number of transformed coefficients and their 
magnitude, but higher could be the delta QP cost. The ideal solution would be to identify for 
each block in a GOP the sweet set of QP values that provides the best global R-D trade-off. 



        

AQP algorithms usually aim at determining a priori for each block the best QP that would 
provide the best global subjective or objective quality while fulfilling the rate constraint. 
These algorithms can be designed to estimate the QP map for a unique frame considering 
only spatial information (i.e. statistics intra-frame or block). Better algorithms would typically 
account for temporal information (i.e. statistics inter-frame), e.g. trying to measure the block 
persistence into the GOP. These kinds of algorithms, e.g. Spatio-Temporal AQP, succeed 
in better optimizing the global R-D trade-off by estimating all temporal and spatial 
dependencies between blocks into a GOP. 

Complementary to a priori AQP algorithms (i.e. based on estimations), the local QP can be 
a posteriori refined in order to adjust the R-D trade-off. Such a posteriori algorithms, e.g. 
Local QP Refinement (LQR) or “Multiple QP optimization” [7], adjust a set of QP candidates 
for a given block by minimizing a local R-D criterion. If carefully implemented, LQR 
algorithms bring significant gains in coding efficiency without compromising a global RDO. 
The add-on in coding efficiency comes from not being based on estimations but on the real 
distortion and rate measurements, considering accurately all dependencies between blocks. 

Coefficient level  

Final quantization adjustment per transformed coefficient is also possible. It can help at 
improving objective scores based on a given R-D criteria minimization. But additional 
perceptual criteria (e.g. noise shaping [8], coefficient filtering/discarding, etc.) can also be 
used to reduce specific visual artifacts (e.g. banding, ringing, etc.). The main advantage of 
coefficient quantization optimization resides in not introducing any additional syntax bit-cost 
overhead; only quantized values are tuned while keeping the quantization parameter 
unchanged. 

For each coefficient, the rounding (into the integer division introduced by the quantization) 
sets the threshold for mapping a set of values to a unique value. Coming back on the 
previous example of a quantization step equal to 10, we could have shifted the rounding 
threshold such that {0,1,2,3,4,5,6,7,8} quantizes to 0, {9,10,….,17,18} to 1, {19,20,….,27,28} 
to 2, etc. Adjusting rounding offers great freedom in the quantization process. For the 
discussed example, it was just a modification of the dead zone [9], but smarter strategies 
can be designed. 

Trellis quantization, e.g. RDO-Q [10], is an option for smart quantization strategy at the 
coefficient level. In a typical configuration, for each coefficient, two possible reconstructed 
values (lower and upper rounding) should be tested and the best one should be retained 
based on a given R-D criterion. For example, given a coefficient of 57 and quantization step 
equal to 10, possible quantized coefficients surrounding 5.7 are 5 and 6 with the possible 
reconstructed values of 50 and 60. The same two options exist for every coefficient in the 
block resulting in a trellis architecture. It defines a minimal path problem optimization to be 
solved using a Viterbi algorithm, for identification of the optimal combination of rounding.  

We will not develop further this part; however, one important comment is that the coefficient 
level quantization optimization does not impact the optimization of the quantization 
step/parameter which is the purpose of this paper.  

Summary 

Quantization process can be optimized at various levels of granularity. Most of the 
techniques can be combined, and once a D is defined, the optimization problem to solve is 
about minimizing D subject to the R(ate) constraint (i.e. a target bitrate to fulfil). 



        

Unfortunately, when dealing with real-world implementations, computational complexity and 
resources consumption are additional constraints to trade against compression efficiency. 
Among the various algorithms discussed so far, some are less computationally intensive 
and more interesting in terms of coding efficiency versus CPU usage. As an example, two 
advanced quantization algorithms used in MediaKind commercial encoders are introduced 
and discussed in the next section.  

TWO KEY DIFFERENTIATING QUANTIZATION FEATURES 

Spatio-Temporal Adaptive Quantization (STAQ) 

STAQ is a global R-D optimization algorithm minimizing D subject to R over the entire GOP 
and providing an optimal local quantizer for each block. In practice, this algorithm is a deep 
evolution of the macroblock-tree algorithm [11], where all the mechanisms have been 
revisited with better modelling of the R-D criterion. Most notably, the distortion modelling into 
STAQ allows easy introduction of perceptual criteria, that helps to significantly improve the 
subjective quality results in comparison to simpler model based on the MSE. 

STAQ is based on a single principle: distortion propagates along time. Quantization process 
applied on each block generates distortion. By design of the prediction scheme (i.e. motion 
compensated prediction), a part of the distortions produced on each reference block is 
propagated on next blocks to code by motion compensation. Thus, image by image, 
compensation after compensation, block distortions accumulate over time. Typically, the 
temporal distortion propagation (from one image to another) is maximal with a Skip-coded 
block, while the propagation is stopped with an Intra-coded block (i.e. no motion 
compensation).  

The essence of the algorithm is then to identify the sample areas that are the most 
referenced by prediction, encode these areas as good as possible (low distortion/low QP), 
and copy these areas as much as possible (bitrate almost zero). 

Time (or coding order)

Recurrently

referenced area

Area not

referenced

 

Figure 4: block unused in the future and top-left block recurrently reused 

As shown in Figure 4, at the top-left of the first image, the green area (or block) persists in 
the next images of the sequence and would be often referenced for prediction. By design, 
this area is then favored on the first image with a lower quantization step (relatively to other 
sample areas into the GOP). In this example, the considered area is relatively still across 
time, hence successive motion compensations would tend toward the Skip mode (i.e. a copy 
of the sample area), and the encoder would generate almost no bits with minimal distortion. 
The same principle also holds for any motion area that is well predicted. Consequently, a 
desirable side effect occurs: copies don’t generate video quality fluctuations, and the video 
quality is stabilized across time. Conversely, when an occlusion occurs in future images (red 



        

area in Figure 4), it is highly probable that the next block will be Intra-coded, thus breaking 
the temporal block dependency. Hence, for an area with a low probability to be referenced 
for prediction, there is no need to spend too many bits on coding. 

Of course, STAQ is more subtle. It builds a weighted dependency network connecting all 
blocks of the same GOP together, accounting for motion estimation, coding mode 
probabilities, other information estimated from a Look-ahead module [12][13], and the target 
bitrate for the GOP. The spatial (i.e. intra-frame) distortion also propagates, usually from the 
top-left corner of the image down to the bottom right of the image (standard dependent). 
STAQ integrates both the spatial and temporal distortion propagations into its R-D 
optimization. 

STAQ provides impressive objective gains. We extensively detailed and analysed into [13] 
a simplified model of STAQ, named Rate-Distortion based Spatio-Temporal Quantization 
(RDSTQ) algorithm. By implementing RDSTQ algorithm into the HEVC reference Model 
(HM) [14], we report up to −26.9% and −15.6% average bitrate savings compared to no 
adaptive quantization for the same SSIM-based and PNSR-based quality, respectively. In 
the context of the HM, the proposed algorithm significantly outperforms related methods 
from state-of-the-art. Coding efficiency results using JCT-VC test conditions [15] are 
summarized in Table 1. We invite interested readers to refer to [13] Section VI for further 
details of the test conditions. 

Classes (Resolutions) BD-BR PSNR  BD-BR SSIM 

Class A (2160p) -12.53% -27.98% 

Class B (1080p) -9.35% -20.82% 

Class C (480p) -17.56% -29.78% 

Class D (240p) -15.82% -30.86% 

Class E (720p) -25.09% -27.37% 

Average -15.59% -26.93% 

Table 1: Average bitrate savings of STAQ (RDSTQ) against no adaptive quantization using 
JCT-VC test conditions [15] and HEVC reference Model (HM). 

It is worth mentioning that the same bitrate-saving range is observed if implementing 
RDSTQ algorithm into x265 open-source encoder [16].  Coding efficiency results into x265 
under JCT-VC test conditions are reported in Table 2. The differences in compression 
efficiency between both implementations into HM and x265, are mainly explained by the 
differences in the Look-ahead implementation for the two contexts (e.g. difference in coding 
dependency estimation accuracy). 

Classes (Resolutions) BD-BR PSNR  BD-BR SSIM 

Class A (2160p) -9.92% -23.87% 

Class B (1080p) -8.48% -20.96% 

Class C (480p) -15.12% -27.88% 

Class D (240p) -11.77% -27.57% 

Class E (720) -14.28% -16.43% 

Average -11.81% -23.53% 

Table 2: Average bitrate savings of STAQ (RDSTQ) against no adaptive quantization using 
JCT-VC test conditions [15] and x265 encoder. 

In addition to the objective metric score comparisons, several subjective quality assessment 
sessions were run among non-expert MediaKind’s employees, and based on a paired 



        

comparison methodology derived from [17]. Analysis of the results demonstrated consistent 
spatial and temporal quality improvements thanks to the STAQ algorithm. One very 
important and intrinsic benefit of STAQ is the improvement of the video quality stability along 
time, which is a characteristic not measured by either SSIM or PSNR. Furthermore, the 
definition and use of a perceptually weighted distortion into the STAQ optimization, e.g. 
accounting for spatial masking effect, makes the video quality much more perceptually 
compelling, picture to picture.  

Finally, and as introduced earlier, STAQ relies on a pre-analysis module for various signal 
statistics estimations, known as Look-ahead. The Look-ahead module is a sub-process 
available in most (if not all) of efficient commercial encoders. For instance, the computation 
overhead added for STAQ modelling into MediaKind optimized SW encoder impacts the 
overall encoding runtime by less than 3% (with optimization and multi-threading) compared 
to no adaptive quantization. The significant video quality gain relative to the small run-time 
increase makes STAQ one of the most powerful adaptive quantization algorithm. 

Local QP Refinement 

LQR stands for Local QP Refinement. Coarsely, it consists, for each block or CU to code, 
to exhaustively compete a set of local quantization parameters by measuring the resulting 
Distortion (out of a reconstruction loop) and Rate (out of an entropy coding estimation) trade-
off. Such brute-force algorithm or concept is not new [7]; but requires a lot of know-how to 
be efficiently implemented for real-time software encoding and combined with a global R-D 
optimization. The motivation of LQR is that by refining or adjusting a posteriori a set of local 
quantizer candidates would help tracking two beneficial situations (described later on): i.e. 
either a local “distortion drop” (for almost the same rate) or a local “rate drop” (for almost the 
same distortion). In this paper, we make the evidence that exploiting (a posteriori) those 
local drops in Distortion or Rate brings additional compression efficiency without 
compromising any (a priori) global R-D optimization. Indeed, the LQR add-on in coding 
efficiency can be complementary to an adaptive QP algorithm with global RDO motivation, 
such as STAQ. One explanation is that it helps to compensate estimation errors of a priori 
model such as STAQ, by real posteriori measurements (verifications) of the distortion and 
rate; for instance, better optimizing the delta QP syntax costs. Besides, as in STAQ, the R-
D optimization performed by LQR can be driven by various distortion criteria, e.g. MSE or 
any other HVS-based metric. 

The quantization followed by the dequantization produces a distortion. Slightly changing the 
quantization step also slightly changes the possible reconstruction values scale: possible 
reconstructed values slide toward or in the opposite direction with respect to the value to 
quantize (i.e. transformed coefficients noted   in Figure 5). 

Figure 5 illustrates the displacement (shift) of the possible reconstruction values when 
playing with the HEVC quantization parameter  𝑃. Iso-reconstruction curves for a given 
quantized value are drawn to exhibit the log form. Quantized values are reconstructed on a 
reconstruction value grid defined by the  𝑃 to QStep scale. As shown in Figure 5, if we 
consider a given coefficient ( ), selecting the appropriate  𝑃, i.e. aligning the reconstruction 
grid with the transformed coefficient value, can potentially lower or nullify the distortion 
(which, counter-intuitively, doesn’t mean decreasing the QP value). This beneficial situation 
is what we defined the “distortion-drop”. Despite the probability of such a situation is reducing 
with the number of non-zero transformed coefficients in a block, the “distortion-drop” effect 
is still possible for a significant proportion of non-zero transformed coefficients in multiple 
blocks. 
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Figure 5: Distortions according to possible reconstruction grids 

Conversely, for almost no distortion increase, the rate for a block can favorably decrease for 
some selected QStep values. By design when increasing the  𝑃, the quantized values 
magnitude decreases, and the rate decreases as expected; in most of the situations the 
quantized error and distortion will then increase accordingly. Interestingly, it can be observed 
that for some transformed coefficient distributions the rate decrease (or “drop”) can be 
significant relative to the local distortion increase, resulting in sweet local R-D trade-offs. 
Additionally, we observe that for some transformed coefficient distributions, and given the 
CABAC context, a small  𝑃 decrease may result in almost no rate increment. It can be 
explained by two facts. First, the CABAC context may be better suited when changing  𝑃, 
making the entropy coding of quantized coefficients more efficient. Secondly, a slight 
quantized coefficients bitrate increase can be compensated by the differential  𝑃 syntax 
bitrate decrease. These two cases generate a lower rate than foreseen that we name “rate-
drop”. 

Overall, refining locally a set of  𝑃 candidates can at the same time be beneficial for both 
rate and distortion, without compromising any global RDO, and that is what LQR does. 
Finally, thanks to additional heuristics and optimizations (e.g. such as distortion estimation 
in Transform domain), the LQR implementation can be kept reasonable in terms of 
computation overhead, with overall an encoding runtime increase measured below 10% in 
a MediaKind optimized software HEVC encoder. 

Compression efficiency performance of the LQR algorithm combined with STAQ (RDSTQ), 
implemented into x265 and using JCT-VC common test conditions, is summarized in Table 
3. Complementary to STAQ algorithm, the coding efficiency add-on is about 6% bitrate 
saving for the same PSNR or SSIM-based quality.  

Classes (Resolutions) BD-BR PSNR  BD-BR SSIM 

Class A (2160p)  -5.6% -4.4% 

Class B (1080p) -6.3% -7.4% 

Class C (480p) -6.2% -6.1% 



        

Class D (260p) -5.4% -5.4% 

Class E (720p) -8.1% -7.2% 

Average -6.3% -6.1% 

Table 3: Additional average bitrate savings of LQR on top of STAQ (RDSTQ) using JCT-VC 
test conditions [15] and x265 encoder.  

CONCLUSION 

By sharing an overview of the hybrid video coding scheme, that holds for most of modern 
video compression standards, we highlight the key role of the quantization in optimizing the 
video quality-bitrate trade-off, as the (almost) only adjustable lossy processing step in any 
encoding system. We consequently detail the various levels of granularity and control points 
available for quantization optimization, and most notably the block or CU-level QP 
adaptation. 

As practical examples, we introduce and share some insights on two differentiating 
quantization algorithms: namely STAQ and LQR. We show that a careful implementation of 
these two complementary algorithms can upgrade, by more than -25% in bitrate saving for 
the same SSIM-based quality, a real-time software encoder based on HEVC. Those 
algorithms would benefit any standard supporting local QP adaptation (e.g. MPEG-2, 
H264/AVC, H266/VVC, etc.). 

Usually, software reference encoder models used for video standard development, typically 
from MPEG ISO/IEC or VCEG ITU-T, do not implement look-ahead and/or advanced 
encoder-only quantization techniques. It somewhat underestimates the performance in 
compression efficiency offered by a given standard, and it is finally into that missing 
optimizations where most of commercial encoder providers will compete/differentiate. Data 
results reported in this paper can help to give an order of the additional gain in compression 
efficiency resulting from the implementation of such encoder-only optimizations. 

REFERENCES 

1. Segall, C. and Katsaggelos, A., 2000. Pre- and post-processing algorithms for 
compressed video enhancement, Conference Record of the Thirty-Fourth Asilomar 
Conference on Signals, Systems and Computers, pp. 1369 to 1373, October. 2000. 

2. Information technology — Coded representation of immersive media — Part 3: Versatile 
video coding. International Organization for Standardization, February 2021. 

3. Schwarz, H. Nguyen, T. Marpe, D. and Wiegand. 2018. T. CE7: Transform Coefficient 
Coding and Dependent Quantization (Tests 7.1.2, 7.2.1), JVET-K0071, Ljubljana,  July 
2018. 

4. Wang, Zhou, Simoncelli, Eero and Bovik, Alan. 2003. Multi-Scale Structural Similarity for 
Image Quality Assessment.  Conference on Signals, Systems & Computers, November 
2003. 

5. Zhi Li, Anne Aaron et al. 2016. Toward A Practical Perceptual Video Quality 
Metric, Netflix TechBlog, June 2016. 

6. G.-J. Sullivan and T. Wiegand. Rate-Distortion Optimization for Video Compression. 
1998. IEEE Signal Processing Magazine, pages 1755–1764, November 1998 



        

7. Li, B. Zhang, D. Li, H. and Xu, J. 2012. QP determination by lambda value, JCTVC-
I0426, Geneva, May 2012. 

8. Westen, S.J.P. Lagendijk, R.L. and Biemond, J. 1996. Adaptive spatial noise shaping for 
DCT based image compression, Proc. IEEE Int. Conf. Acoustics, Speech and Signal 
Processing, vol. 4, pp. 2124 to 2127, May 1996. 

9. Sun, J. et al. 2013. Rate-Distortion Analysis of Dead-Zone Plus Uniform Threshold 
Scalar Quantization and its Application Part II: Two-Pass VBR Coding for H.264/AVC, 
IEEE Transactions on Image Processing, vol. 22, No. 1, pp. 215-228, Jan. 2013. 

10. Karczewicz, M., Ye, Y. and Chong I. 2008. Rate distortion optimized quantization, ITU-T 
Q.6/SG16 VCEG, VQEG-AH21, Antalya, Turkey, 2008. 

11. Garrett-Glaser, J. 2009. A novel macroblock-tree algorithm for high performance 
optimization of dependent video coding in h.264/avc, Tech. Rep., 2009. 

12. Henot, J. P. Ropert, M. Le Tanou, J. Kypréos, J. and Guionnet, T. 2013. High efficiency 
video coding (HEVC): Replacing or complementing existing compression standards?, 
IEEE International Symposium on Broadband Multimedia Systems and Broadcasting 
(BMSB), London, pp. 1 to 6, 2013. 

13. Bichon, M. Le Tanou, J. Ropert, M. Hamidouche, W. and Morin, L. 2019. Optimal 
Adaptive Quantization based on Temporal Distortion Propagation model for HEVC, IEEE 
Transactions on Image Processing. Vol. 28, Issue 11, pp. 5419 to 5434, November 2019. 

14. HEVC HM reference software, [online] Available at: 
https://vcgit.hhi.fraunhofer.de/jvet/HM. 

15. Bossen, F. 2013. Common test conditions and software reference configurations. 2013. 
Tech. Rep. JCTVC-L1100, January. 2013.  

16. x265, [Online]. Available at: https://bitbucket.org/multicoreware/x265 

17. ITU-T Rec. P.910. 2008. Subjective Video Quality Assessment Methods for Multimedia, 
April 2008. 

https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8809862

