

THE (NON)SENSE OF ARTIFICIAL INTELLIGENCE IN REAL-
TIME VIDEO ENCODING

J. De Cock

Synamedia, Belgium

ABSTRACT

Thousands of articles have appeared over the last decade(s) claiming the
benefits of AI and ML. Some of these are realistic, while others
overpromise the potential benefits of ML techniques in a wide range of
applications. So where are the real benefits, and where do our marketing
departments cross the line into the realm of nonsense? And what about
applications under stringent conditions, such as real-time (video)
processing or encoding? How much of the net benefits do you keep once
you take into account the computational overhead, latency and cost
constraints?

This article takes a stab at distinguishing reality from fiction, where we see
the benefits, and how the tools provided by AI enhance our encoder
toolbox. After settling on AI/ML terminology, we give an overview of the
state-of-the-art in the domain of video encoding. Next, we present
examples and counterexamples of techniques that have worked, along
with approaches that benefit our line-up of encoders.

INTRODUCTION

It is not my intention in this article to repeat a comprehensive overview of artificial
intelligence, machine learning, or (deep) neural networks. Excellent books and articles
have been written in this context e.g. by ‘Sze et al (1)’ and ‘Ding et al (2)’, and new papers
are published faster than they can be read.

First of all, it’s helpful to get the terminology right. AI and ML are often used
interchangeably. To avoid any confusion, we repeat the hierarchy of classes within
Artificial Intelligence (AI). AI is the science and engineering of creating intelligent
machines/programs. Within AI, machine learning (ML) has been defined as the field of
study that gives computers the ability to learn without being explicitly programmed.

Many different types of ML algorithms are available, each having their merits, including
Decision Trees, Random Forest and Support Vector Machines. Given their performance
on a wide variety of tasks, the focus has shifted towards brain-inspired ML techniques, in
which neurons are used that can take signals as input, perform a computation on those
signals, and generate an output signal.

Neural networks (NNs) are the most common type of brain-inspired ML techniques, in
which a neuron’s computation involves a weighted sum of the input values, after which a
non-linear function is applied that generates an output only if the input crosses some
threshold. Within the domain of neural networks, we find deep learning, in which the NNs

have more than 3 layers, in which at least one layer is hidden. These so-called deep
neural networks (DNNs) have become increasingly popular, and often contain dozens or
even hundreds of (convolutional) layers.

In general, we have seen an evolution from shallow networks using hand-crafted features
as inputs towards “black box” deep neural networks with a multitude of convolutional filter
layers. Especially for computer vision, using several convolutional layers seems to be very
effective. It is tempting to expect the same evolution for video compression.

THE COMPLEXITY OF DEEP LEARNING NETWORKS

To set the expectations: despite all their potential, applying DNNs to video encoding, and
hoping for magical jumps in compression performance to come out, simply does not
happen. Either the resulting networks are too complex and require a lot of computational
power – raising the cost of your solution; or they become very shallow, and the accuracy
goes down. In that case, it might be more beneficial to stick with manually tailored
heuristics in your established encoders. Hardware acceleration can work (but also raising
the cost), but you lose the flexibility in deployment of your solution.

In literature, the complexity of DNNs keeps increasing. Fortunately, more and more
publications are focusing on, or at least mentioning, the complexity of ML. So, what is a
good measure of the complexity of machine learning? A reference point that is used more
and more is to express the complexity of these architectures by the number of multiply-
and-accumulate operations (MACs). These MACs can range from thousands to millions
per second and are a good representation of the complexity (1). Even after hardware
parallelization, a MAC remains a costly operation.

As an example, state-of-the-art CNNs that have been submitted to the ImageNet challenge
are listed in Table 1, ranging from LeNet to ResNet and VGG, mentioning the number of
layers and total number of MACs needed. For the more recent networks, operation counts
are typically expressed in GigaOps, highlighting the explosion in computational power
needed.

 LeNet AlexNet GoogLeNet ResNet-50 VGG-16

of convolutional layers 2 5 57 53 13

Total weights 60k 61M 7M 25.5M 138M

Total MACs 341k 724M 1.43G 3.9G 15.5G

Table 1 – Overview of popular DNNs

Even on powerful (and expensive) GPUs, inference time for these networks can go up to
more than 100 ms for a single 1024x1024 image. Also, for these more recent networks,
accuracy per parameter goes down, and the more oversized networks do not fully take
advantage of their learning ability (‘Canziani et al (3)’). Although this just gives an
indication of the complexity of modern-day DNNs, how much can video compression
benefit from such deep networks?

EVOLUTION AND COMPUTATIONAL COMPLEXITY OF VIDEO CODING

Video coding has come a long way since the first digital compression systems in the 80s.
From H.261 over MPEG-2 and H.263, we’re now in a multi-codec world of several
compelling formats, including H.264/AVC, HEVC, VP9, AV1 and VVC (See e.g. ‘DeCock
(4)’). Typically, the introduction of video standards has gone hand-in-hand with increases
in resolution. In particular in the broadcast world, there is a close connection between the
next step in resolution and new standards (e.g. H.264/AVC and HD, HEVC and UHD). The
introduction of VVC is expected to go hand-in-hand with the adoption of 8K.

Along with compression efficiency improvements, the complexity in video encoders and
decoders has grown substantially. For real-time encoding, there are increasing challenges
to process high-frame, high-resolution video in real-time with the latest standards. In real-
life systems, such as in broadcast or live ABR distribution, the cost of the system is a very
important parameter to remain competitive. In general, AI techniques can bring benefits to
make encoder providers more competitive. But, as seen above, the complexity of many
networks is prohibitive to put into practice, leading to net disadvantages when applied to
encoding. It is this trade-off that we’ll be exploring in the remainder of this paper, excluding
some approaches from consideration, while discussing others that look promising. But as
announced in the introduction, there is a gap between marketing promise and reality.

MACHINE LEARNING IN VIDEO CODING

Machine learning has been applied in image and video coding for multiple decades. In the
late 80s, experiments were already ongoing with image compression based on multilayer
perceptron (MLP) networks (‘Cottrell et al (5)’). In the 90s, work shifted towards random
neural networks for image (‘Marsi et al (6)’, ‘Gelenbe and Sungur (7)’) and video (‘Cramer
et al (8)’) compression. These publications focused on alternatives to then-current
compression schemes such as JPEG and H.261, with comparable computational
complexity. Although they offered reasonable performance, they never made it into the
field and the focus shifted to standardized encoding solutions such as MPEG-2 and
H.264/AVC.

Since the early 2010s, machine learning work related to video coding has revived, and
truly accelerated over the last years, leading to what you could describe as “deep
schemes”, “deep tools” and “standard-compliant” work. It is almost impossible to provide
an exhaustive overview of the work in this direction, as each of these topics are extremely
hot research topics with new publications appearing daily.

Deep schemes

Deep compression schemes are a radically different approach for encoding, providing a
complete end-to-end solution. They build on the concept of dimensionality reduction and
auto-encoding, enabling automated learning and eliminating the need for hand-crafted
features (‘Hinton et al (9)’). These auto-encoders have received growing attention over the
last 5 years, with very promising results, especially in terms of perceptual quality. In ‘Chen
et al (10)’, a CNN-based video compression framework (DeepCoder) was presented, with
separate CNN networks for predictive and residual signals, after which scalar quantization
and Huffman coding are applied. The authors obtained similar efficiency as x264 IPPP
coding in terms of SSIM. No results on its computational requirements were mentioned
though. Other work by ‘Ballé et al (11)’ has focused on end-to-end optimization and image
compression, with potential to outperform formats such as JPEG and JPEG 2000 in terms

of compression performance. ‘Chen et al (12)’ focuses on CNNs to model spatio-temporal
coherence to perform predictive coding, approaching the compression performance of
H.264/AVC. But, overall computational complexity was reported to be 141x that of the
H.264/AVC reference software (JM). ‘Lu et al (13)’ presented an end-to-end deep video
compression network, with a complexity of about 11M parameters, reaching about 24 fps
for CIF-sized videos.

In (2), an overview is given of end-to-end neural video coding solutions, along with case
studies. It is clear though that these “deep schemes” are not ready for prime time in real-
time video, and that they lack a standardized solution before they would be widely
deployed.

Deep tools

Closer to existing standards is the work on so-called “deep tools” or “modularized neural
video coding” (2), in which encoder tools are replaced by learned algorithms. Encoder
tools are traditionally hand-designed and tweaked by engineers active in the
standardization process. By learning, solutions can be found that can better adjust to the
type of content, or that better exploit spatio-temporal coherence.

Over the last years, we’ve seen learned algorithm proposals for intra prediction, e.g. ‘Cui
et al (14)’, where small gains were reported compared to HEVC reference software. ‘Li et
al (15)’ mentions 1.1% bitrate savings at a cost of 148% and 290% relative to the HM
encoding and decoding software, respectively. Complementary HEVC intra prediction
modes were proposed in ‘Pfaff et al (16)’, which explicitly mentions the high cost in terms
of multiplications, which grows with the block size (from 20 multiplications per pixel for 4x4
blocks to 132 multiplications per pixel for 32x32 blocks).

For temporal prediction, ‘Liu et al (17)’ present a fractional interpolation method based on
a grouped variation convolutional neural network (GVCNN). This gives bitrate savings of
2.2% on average, but with encoder/decoder times of 6x and 1500x, again relative to
reference software. Alternative schemes have been proposed, e.g., to predict texture
without sending motion information between encoder and decoder (‘Choi and Bajić (18)’).
Encoder time is 1.5x, while decoder time is more than 100x.

Standardization efforts

Currently, standardization efforts are on their way to bring ML tools into real-life. An activity
in JPEG has been started (JPEG AI) to kick off explorations in the direction of learning-
based encoding. Also, in MPEG/JVET there is a tendency towards using AI in video
compression schemes. In the past JVET meetings, several contributions have been
submitted in this direction, and an AHG was established with the goal of developing a
potential VVC extension supporting learning-based coding tools (‘Liu et al (19)’). Tools that
have been discussed in this AHG include intra prediction, in-loop filtering, post-processing,
and super-resolution. Similar work is ongoing within the Alliance for Open Media, for
improvements in the context of AV1 and AV2.

On the downside, many of these tools are again very complex. On the positive side,
attention is paid to the complexity by optimizing the networks. In the JVET AHG, it is a
requirement to mention the number of MACs per pixel. For many of these tools though,
decoding time compared to VVC reference software goes up by two or three orders of
magnitude, and more work is needed to reduce complexity to acceptable levels.

Work compliant with existing standards

Part of the more recent research has focused on improving and accelerating video
encoding in a normative way (i.e., without modifying existing standards or tools). Starting
with the introduction of HEVC, plenty of research can be found that tries to reduce encoder
complexity. As an example, “data mining” approaches were applied, resulting in decision
trees to reduce computational complexity of HEVC encoding (‘Correa et al (20)’). In ‘Xu et
al (21)’, both a CNN-based and LSTM-based model are introduced to accelerate quadtree
partitioning for intra and inter coding in HEVC. Still, the first model needs a total of 1.5M
multiplications and additions, while the second requires about 760K. Although these
models lead to reductions of 60-70% of encoding time compared to reference software,
they are orders of magnitude too high for practical implementations.

Recently, worked has shifted towards acceleration of VP9 (‘Paul et al (22)’), AV1 (‘Chiang
et al (23)’) and VVC (‘Tang et al (24)’, ‘Zhao et al (25)’) encoding. The smallest model in
(22) used about 26K trainable parameters, requiring about 10M floating point operations
per 64x64 superblock. While this results in speed-ups compared to VOD-type-settings, it is
much harder to justify this number of operations for real-time encoding.

Pre- and post-processing

DNNs have been shown to be extremely powerful for (pre-)filtering applications. A range of
publications have been written on pre-filtering techniques including sharpening, denoising,
contrast enhancement, motion deblurring, and edge detection. A different approach
focuses on video content semantics to assist in video encoding, such as object detection /
segmentation, saliency prediction etc. More forward-looking are analysis-synthesis
techniques that are more closely aligned to how e.g. texture is perceived by the human
visual system. A texture-based video coding approach is presented in (2), along with its
open issues, such as the accuracy of the analysis.

A promising direction for some time has been on super-resolution, where input videos are
downsampled before encoding, after which the reconstructed frames are upsampled again
at the receiver. These approaches can save bits at acceptable complexity requirements
(see ‘Yang et al (26)’ for an overview). The benefit of these approaches is that they can
work in a standard-compliant way, without modifications to the underlying encoders or
infrastructure. A downside is that the super-resolution upscaling algorithms need to be
applied at the receiver side, making not all (legacy) clients suitable for this type of
distribution.

Complexity considerations

As stated in (2), “All of these issues present serious barriers to the market adoption of
DNN-based tools, particularly on energy-efficient mobile platforms. One promising solution
is to design specialized hardware for the acceleration of DNN algorithms”. And according
to ‘Liu et al (27)’, “Comparing the existing deep tools with their counterparts in the
traditional non-deep schemes, one may easily notice that the computational complexity of
the former is much higher than the latter. High complexity is indeed a general issue of
deep learning, and a critical issue that hinders the adoption of deep networks in scenarios
of limited computing resource, e.g. mobile phones.”

Despite all their potential, we’re still far off from applying these schemes and tools in real-
time encoders. While plenty of research and engineering has been spent on accelerating
traditional decision making in encoders, there is a lot of work needed towards accelerating

DNN-based encoder decision making. Throwing in a GPU or parallel hardware does not
resolve the situation, since it results in a very expensive solution, which is a multiple of
currently deployed software on generic CPUs. It is a good evolution that in more and more
publications the complexity of networks is explicitly mentioned, seeing how far we are still
away from practical deployment for many networks.

SO WHY ISN’T THIS WORKING (YET)?

Theory vs practice

For most of the publications described above, significant improvements were reported,
with impressive speed gains compared to the open-source reference software. As we all
know though, these reference code bases are far from optimized, with speeds expressed
in “seconds per frame” rather than “frames per second”. It is easy to demonstrate speed-
ups relative to these code bases, but it becomes way harder when compared to optimized
encoders that have been tuned by experts, optimized with intrinsics and that operate at
high frame rates and resolutions in real-time.

Arguably, it makes sense that academic publications focus on comparison with reference
software, since these are established points of reference, as they have been for years.
Still, the danger of this practice is that the complexity of the reference software and non-
real-time encoders hides the complexity of the machine learning networks used in these
papers, hence over-promising their potential. As a result, applying these as such to
practical encoders leads to limited gains. Techniques to simplify and optimize encoders
are well-known in the industry. Accelerating repetitive MAC operations in DNNs on the
other hand is limited by capabilities of hardware, parallelization options and memory
access. Even though accelerators are available, more time and effort need to be spent on
the (co-)design of smart networks for real-time processing.

Constraints of real-time video

It is important to make a distinction between training effort and inference effort. It is
primarily the latter that we’re focusing on, while the training phase can be orders of
magnitude more expensive. The focus and target in this paper is on real-time inference for
video encoding and processing, that is widely deployable, preferably on generic CPUs. In
that way, you can reach deployment on any platform, including on the widest selection of
cloud instances.

There is of course a difference between offline encoding for VOD services, and encoding
for live video (broadcast, live events, live ABR, web conferencing for example). For the
former, more effort and compute cycles can be spent to encode and prepare episodes and
movies. This is an encode-once, decode-millions-of-times scenario, and it is ok to spend
hours per encode if necessary.

For real-time encoding, millions of decisions have to be made every second, and compute
capacity is limited, leading to optimization in a three-dimensional rate-quality-complexity
space. For live deployments, you also want to limit the financial cost. Any increase in
complexity has to be justified – adding a GPU to the system can quickly escalate the cost
of your server and hurt your competitiveness. HW/SW interaction can also complicate
interaction and transfers between processes, and complicate the implementation. Moving
purely to hardware can limit the flexibility and features that can be supported in your video
pipeline. With HW implementations, there is limited space for VQ improvements and

innovation cycles slow down. All of these will influence the decision to move towards
(partial) HW implementations, or to stay fully focused on software.

ACCELERATING NEURAL NETWORKS

It’s clear that the networks described above cannot be applied as such as in real-time
systems with acceptable cost. What has been done to simplify NNs so far, or to make their
potential more accessible?

Hardware acceleration

Fortunately, we have seen several efforts to enable inference in real-time on deep learning
accelerators, e.g. research chips such as Stanford’s EIE and TETRIS chips; the work by
Chen et al. at MIT on the Eyeriss reconfigurable DNN accelerator; and the DianNao series
of research chips. ‘Reuther et al (28)’ give an overview with a distinction between research
chips, very low power chips, embedded chips, data center chips and autonomous systems
currently in development or use.

Although these accelerators will certainly help in dedicated use cases, we want to deploy
our encoders as broadly as possible. For common CPUs, approaches such as TensorFlow
Lite can also help in efficiently deploying models, as can efficient instruction sets such as
VNNI instructions on AVX-512.

Co-design

In general, co-design of DNN models and hardware (1) will help in making these models
more accessible, by using a combination of the following:

- Network quantization. In many cases, floating-point accuracy is overkill for DNNs. By
reducing precision of operations and operands, and by representing floating-point
weights and/or activations with fewer bits, network calculations can be accelerated. A
trade-off then needs to be found between acceleration and network accuracy. This is in
line with what e.g. Intel is doing by providing conversion software from 32-bit floating
point precision. Academic work in this direction is found in e.g. ‘Zhang et al (29)’, where
a method was proposed to quantize both the weights and activations to arbitrary bit-
widths. (1) summarizes different techniques to reduce prediction along with accuracy
loss compared to 32-bit float operations.

- Compact network design can be achieved by reducing the number of operations and
model size. This can be done by exploiting activation statistics (for zero or low-valued
activations), or by network pruning (setting redundant weights to zero). The latter builds
on early work in ‘Le Cun et al (30)’. More recent applications are described in e.g. ‘Li et
al (31)’.

TinyML

The co-design described in the previous section is aligned with the goals of “TinyML”, a
field which targets hardware, algorithms and software capable of performing on-device
(sensor) data analytics at extremely low power. As described by ‘Verhelst and Moons (32)',
“the combination of pruning, weight sharing, and Huffman compression compresses state-
of-the-art networks by 50 times in memory size”. It is indeed necessary to reduce the
complexity of deep networks by several orders of magnitude to allow their implementation
on low-power devices.

In the end, the complexity that we’re searching for in video encoders, is similar to networks
that this research is trying to accomplish on low-power devices. Within a video encoder,
many networks can run in parallel to make thousands of decisions per second. Each of
these networks is allowed to only occupy a small part of the overall power of the CPU.

Interpretability: back to feature engineering

In the beginning years of machine learning, research focused on features to feed into
neural networks. Later, black-box-type models were introduced that gave more flexibility,
but also higher complexity. Recently, the ability to interpret what a model has learned is
receiving an increasing amount of attention (‘Murdoch et al (33)’). Among the
interpretability methods, domain-based and model-based feature engineering are
presented. Domain/expert knowledge and insights help to identify features that are domain
specific and help interpretation,

Recent papers have focused on interpretability of CNNs for video coding (‘Murn et al
(34)’). This approach tries to reduce the complexity of CNNs by interpreting the learned
parameters to build simpler models. As stated in (34), interpreting and understanding
relationships learned by the network enables the derivation of streamlined, less complex
algorithms which achieve simpler performance to the original models.

SO, WHAT DOES WORK?

Fortunately, it is not all bad news, and the trend toward simplification is leading to good
examples of what can be achieved with ML, in a trade-off between accuracy and
computational complexity. Although most of the deep networks presented in literature and
described above cannot be applied as such in a real-time encoding workflow at acceptable
cost, we do see benefits in the following areas in the near future.

Optimized encoder decisions

Given the huge search space, encoder decisions are good candidates for speed-up. A
number of techniques have already been mentioned above, some of which only work on
reference software. But, more shallow neural networks have the potential to provide a
good trade-off between complexity and accuracy. In particular the more recent formats
such as HEVC, AV1 and VVC will benefit most of NN-based acceleration, given their many
degrees of freedom. Promising work has been published in the following directions, among
others:

- Intra prediction. The work by ‘Santamaria et al (35)’ presents NN-based intra prediction
modes along with simplifications that lead to multiplications in the order of 100s up to
10,000s for 16x16 blocks. This builds on the work of (16), and an interpretation
analysis is run to come to simpler, explainable predictors that are easy to implement.
The result is NN-based modes that are much closer to real-life usage.

- Inter Prediction. Although much of the recent work has focused on NNs, other ML
techniques such as Decision Trees prove to be efficient ways to optimize encoder
decisions, as in ‘Kim et al (36)’, where inter prediction is accelerated for AV1.

- Mode decision. ‘Liu et al (37)’ presented a CNN-based CU partition size decision with a
reasonable complexity of 3,000 MACs, along with a hardware implementation.

- Transform selection. The transform search for AV1 is accelerated in ‘Su et al (38)’,
based on a neural network with one hidden layer. For transform kernel prediction, two
shallow networks are used which are combined into a score for the 2D transform.

The message from these papers, along with our findings, are that fairly simple neural
networks can produce accurate results, and at acceptable computational complexity.

Video quality measurement

Several metrics have been introduced that are trained based on neural networks, for
example to predict PSNR, SSIM, subjective scores or for QoE monitoring. The popular
VMAF metric was trained based on Support Vector Machine regression. Still, such metrics
can be very complex, making it challenging to calculate them in real-time, or deep inside
the encoder. It is however possible to approximate these metrics based on low-complexity
networks and features, as described in ‘Barman et al (39)’.

Real-time encoding in practice

Rate control is one of the algorithms in real-time encoders that can truly make a difference
in video quality. Rate control determines how to optimally allocate bits between GOPs,
frames and blocks within a frame, hereby maximizing visual quality. For frame-level rate
control, we have seen promising improvements in estimation accuracy, that make rate
control more adaptive to different types of content, and helping eliminate misprediction in
case of outliers, e.g. rapid transitions between easy and difficult types of content.

In ‘Li et al (40)’, a CNN is used to predict the Lagrange multiplier, leading to more accurate
rate control. Saliency-based encoding is a promising way to direct bits to where they
matter most. In ‘Lyudvichenko et al (41)’, the saliency maps are fed into the x264 encoder,
to assist its rate control. Importance maps such as in ‘Li et al (42)’ can further help
adaptive quantization.

In the broadcast world, statistical multiplexing algorithms provide a powerful way to fully
utilize the available bandwidth for a bundle of channels. ML-based complexity estimation
can help to allocate bitrate to different channels. For VOD applications, ML helps to
optimize video quality in a content-adaptive way. By including low-complexity video quality
measurement, VQ can be steered in a real-time fashion, leading to decisions optimized
down to shot level.

Throttling helps to automatically adjust the complexity of the encoder depending on the
available resources on the server. When the CPU load goes up, the encoder can scale the
search operations down. In extreme cases, this could have an impact on VQ. Throttling
can be assisted by ML operations to find an optimal balance between CPU load, encoder
decisions and VQ, resulting in more robust encoders.

CONCLUSIONS

Machine learning techniques have made substantial jumps forward over the last decades.
As a side-effect, also the complexity has grown manifold. Although deep neural networks
can provide excellent accuracy for a variety of tasks, they come with substantial
computational, and hence financial cost. To cope with this cost, there are tendencies
toward simplification, efficient co-design and hardware acceleration for DNN inference
networks.

Video compression, in particular real-time encoding, poses challenges for any platform.
Millions of pixels, and thousands of decisions have to be processed every second. A trade-
off needs to be made between handcrafted techniques and deep networks that hide some
of the ‘interpretability’. Unfortunately, many of the techniques described in literature only
perform well on very complex encoders, such as poorly optimized reference software.
Once you apply these to fast encoders, the true complexity of these DNNs becomes
apparent.

It is clear that more work is needed to make these approaches more accessible, and at a
cost that is close to what can be achieved with expert-tuned heuristics. At least some good
examples can be found, but more publications need to be explicit about the applicability
and focus on computational complexity. Nonetheless, good examples can be found of
where ML can be applied in real-time video encoding, leading to faster, more adaptive and
robust encoders.

REFERENCES

1. V. Sze, Y. Chen, T. Yang and J. S. Emer, "Efficient Processing of Deep Neural
Networks: A Tutorial and Survey," in Proc. of the IEEE, vol. 105 (12), pp. 2295-2329,
Dec. 2017.

2. D. Ding, Z. Ma, D. Chen, Q. Chen, Z. Liu and F. Zhu, "Advances in Video Compression
System Using Deep Neural Network: A Review and Case Studies," in Proc. of the
IEEE, March 2021.

3. A. Canziani, E. Culurciello and A. Paszke, "Evaluation of neural network architectures
for embedded systems," IEEE Int. Symposium on Circuits and Systems (ISCAS), 2017.

4. J. De Cock, “Navigating a Multi-Codec World”, Streaming Media Magazine,
https://www.streamingmedia.com/Articles/ReadArticle.aspx?ArticleID=145580.

5. G. W. Cottrell, P. Munro and D. Zipser, “Image compression by back propagation: an
example of extensional programming,” Models of cognition: rev. of cognitive science,
vol. 1 (208), 1989.

6. S. Marsi, G. Ramponi and G. L. Sicuranza, "Improved neural structures for image
compression," Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP),
1991, pp. 2821-2824.

7. E. Gelenbe and M. Sungur, “Random network learning and image compression,” in
IEEE Int. Conf. on Neural Networks (ICNN), vol. 6, 1994, pp. 3996–3999.

8. C. Cramer, E. Gelenbe and H. Bakircloglu, "Low bit-rate video compression with neural
networks and temporal subsampling," in Proceedings of the IEEE, vol. 84, no. 10, pp.
1529-1543, Oct. 1996.

9. G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural
networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

10. T. Chen, H. Liu, Q. Shen, T. Yue, X. Cao, Z. Ma, “DeepCoder: A deep neural network
based video compression”. IEEE Visual Communications and Image Processing
Conference (VCIP), 2017.

11. J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized image compression”,
International Conference on Learning Representations (ICLR), April 2017.

12. Z. Chen, T. He, X. Jin and F. Wu, “Learning for Video Compression”, in IEEE Trans. on
Circuits and Systems for Video Technology, vol. 30 (2), pp. 566-576, Feb. 2020.

13. G. Lu, W. Ouyang, D. Xu, X. Zhang, C. Cai and Z. Gao. “DVC: An End-To-End Deep
Video Compression Framework.” IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019.

14. W. Cui et al., “Convolutional Neural Networks Based Intra Prediction for HEVC”, Data
Compression Conference (DCC), 2017, pp. 436-436.

15. J. Li, B. Li, J. Xu and R. Xiong, “Intra prediction using fully connected network for video
coding”, IEEE International Conference on Image Processing (ICIP), 2017.

16. J. Pfaff, P. Helle, D. Maniry, S. Kaltenstadler, W. Samek, H. Schwarz, D. Marpe, and T.
Wiegand, “Neural network based intra prediction for video coding,” SPIE Applications
of Digital Image Processing XLI, vol. 10752, 2018.

17. J. Liu, S. Xia, W. Yang, M. Li, and D. Liu, “One-for-all: Grouped variation network-
based fractional interpolation in video coding,” IEEE Transactions on Image
Processing, vol. 28 (5), pp. 2140–2151, 2018.

18. H. Choi and I. V. Bajić, “Deep Frame Prediction for Video Coding”, in IEEE Trans. on
Circuits and Systems for Video Technology, vol. 30 (7), pp. 1843-1855, July 2020.

19. S. Liu et al., “AhG on neural network based coding tools”, JVET-S0267, June 2020.

20. G. Correa, P. A. Assuncao, L. V. Agostini and L. A. da Silva Cruz, “Fast HEVC
encoding decisions using data mining,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 25 (4), pp. 660– 673, Apr. 2015.

21. M. Xu, T. Li, Z. Wang, X. Deng, R. Yang and Z. Guan, "Reducing Complexity of HEVC:
A Deep Learning Approach," in IEEE Transactions on Image Processing, vol. 27 (10),
pp. 5044-5059, Oct. 2018.

22. S. Paul, A. Norkin and A. C. Bovik, “Speeding Up VP9 Intra Encoder with Hierarchical
Deep Learning-Based Partition Prediction”, in IEEE Transactions on Image Processing,
vol. 29, pp. 8134-8148, 2020.

23. C. Chiang, J. Han and Y. Xu, “A Multi-Pass Coding Mode Search Framework for AV1
Encoder Optimization”, Data Compression Conference (DCC), 2019.

24. G. Tang, M. Jing, X. Zeng and Y. Fan, “Adaptive CU Split Decision with Pooling-
variable CNN for VVC Intra Encoding”, IEEE Visual Communications and Image
Processing (VCIP), 2019.

25. J. Zhao, Y. Wang, Q. Zhang, “Adaptive CU Split Decision Based on Deep Learning and
Multifeature Fusion for H.266/VVC”, Scientific Programming, 2020.

26. W. Yang, X. Zhang, Y. Tian, W. Wang, J. Xue and Q. Liao, "Deep Learning for Single
Image Super-Resolution: A Brief Review," in IEEE Transactions on Multimedia, vol. 21
(12), pp. 3106-3121, Dec. 2019.

27. D. Liu, Y. Li, J. Lin, H. Li, F. Wu, “Deep Learning-Based Video Coding: A Review and A
Case Study”, ACM Computing Surveys 53 (1), pp. 1-35, Feb. 2020.

28. A. Reuther, P. Michalea, M. Jones, V. Gadepally, S. Samsi, and J. Kepner, “Survey of
Machine Learning Accelerators”, IEEE High Performance Extreme Computing
Conference (HPEC), 2020.

29. Zhang, D., J. Yang, Dongqiangzi Ye and G. Hua. “LQ-Nets: Learned Quantization for
Highly Accurate and Compact Deep Neural Networks”, European Conference on
Computer Vision (ECCV), pp. 365-382, 2018.

30. Y. LeCun, J. S. Denker and S. A. Solla, “Optimal Brain Damage,” in NIPS, 1990.

31. H. Li, K. Asim, I. Durdanovic, H. Samet and H. Graf. “Pruning Filters for Efficient
ConvNets.”, ICLR 2017.

32. M. Verhelst and B. Moons, "Embedded Deep Neural Network Processing: Algorithmic
and Processor Techniques Bring Deep Learning to IoT and Edge Devices," in IEEE
Solid-State Circuits Magazine, vol. 9 (4), pp. 55-65, Fall 2017.

33. W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, B. Yu, “Definitions, methods, and
applications in interpretable machine learning”, Proc. of the National Academy of
Sciences, vol. 116 (44), Oct 2019, pp. 22071-22080.

34. L. Murn, S. Blasi, A. F. Smeaton, N. E. O’Connor and M. Mrak, “Interpreting CNN For
Low Complexity Learned Sub-Pixel Motion Compensation in Video Coding”, IEEE
International Conference on Image Processing (ICIP), 2020, pp. 798-802.

35. M. Santamaria, S. Blasi, E. Izquierdo and M. Mrak, “Analytic Simplification of Neural
Network Based Intra-Prediction Modes for Video Compression”, IEEE International
Conference on Multimedia & Expo Workshops (ICMEW), 2020.

36. J. Kim, S. Blasi, A. S. Dias, M. Mrak and E. Izquierdo, “Fast Inter-prediction Based on
Decision Trees for AV1 Encoding”, IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2019, pp. 1627-1631.

37. Z. Liu, X. Yu, Y. Gao, S. Chen, X. Ji and D. Wang, “CU Partition Mode Decision for
HEVC Hardwired Intra Encoder Using Convolution Neural Network”, IEEE Transactions
on Image Processing, vol. 25 (11), pp. 5088-5103, Nov. 2016.

38. H. Su, M. Chen, A. Bokov, D. Mukherjee, Y. Wang and Y. Chen, "Machine Learning
Accelerated Transform Search for AV1," Picture Coding Symposium (PCS), 2019.

39. N. Barman, E. Jammeh, S. A. Ghorashi and M. G. Martini, “No-Reference Video
Quality Estimation Based on Machine Learning for Passive Gaming Video Streaming
Applications”, in IEEE Access, vol. 7, pp. 74511-74527, 2019.

40. Y. Li, B. Li, D. Liu and Z. Chen, "A convolutional neural network-based approach to rate
control in HEVC intra coding," IEEE Visual Communications and Image Processing
(VCIP), 2017.

41. V. Lyudvichenko, M. Erofeev, A. Ploshkin, and D. Vatolin, “Improving video
compression with deep visual-attention models,” International Conference on Intelligent
Medicine and Image Processing, 2019, pp. 88–94.

42. M. Li, W. Zuo, S. Gu, D. Zhao, D. Zhang, “Learning convolutional networks for content-
weighted image compression”, IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018, 3214-3223.

